首页|基于深度学习的面料密度回归预测

基于深度学习的面料密度回归预测

扫码查看
在实际面料设计和质量检测过程中,人工检测面料密度通常需要耗费大量的时间与人力资源,效率十分低下.为了解决这一问题,提出一种基于深度学习的面料密度回归预测方法.首先,基于迁移学习在改进后的VGG19上进行训练,在卷积层后面加入自适应平均池化层使输入图像大小不受限制,在全连接层加入S VD矩阵分解来减少计算时间.其次,删除分类层,将全连接层的输出作为最终模型的输出结果.在训练过程中,选用均方差损失函数,以某纺织企业提供的面料为数据集,进行对比实验和结果分析.结果表明:提出的方法相较于传统方法更加智能化,其面料密度计算误差约为5%,准确率为95.5%,具有一定的可行性.
Regression prediction of fabric density based on deep learning
In the actual process of fabric design and quality detection,manual detection of fabric density usually requires a lot of time and human resouce,and the efficiency is very low.In order to solve the problem,a research method based on deep learning for fabric dendity regression pre-diction was proposed.Firstly,based on transfer learning,the improved VGG19 was trained,and the convolutional layers and fully connected layers of the network were improved by adding SVD matrix decomposition to reduce the calculation time of the fully connected layers.Secondly,the classification layer was removed,and the output of the fully connected layer was used as the final model output result.During the training process,the mean square error loss function was selected,and a comparative experiment and result analysis were conducted using fabrics provided by a cer-tain textile enterprise as the dataset.The results show that compared to traditional methods,the proposed method is more intelligent,with a fabric density calculation error of about 5%and an accuracy of 95.5%,which has certain feasibility.

fabric densitydeep learningtransfer learningregression predictionVGG19

毋涛、王娟、车秋凌

展开 >

西安工程大学计算机科学学院,陕西西安 710600

安踏(中国)有限公司创新研发部,福建晋江 362200

面料密度 深度学习 迁移学习 回归预测 VGG19

国家自然科学基金

62176204

2024

纺织高校基础科学学报
西安工程大学 全国纺织教育学会

纺织高校基础科学学报

CSTPCD
影响因子:0.339
ISSN:1006-8341
年,卷(期):2024.37(1)
  • 24