首页|基于陆地表面温度反演土壤水分及监测干旱的适用性研究

基于陆地表面温度反演土壤水分及监测干旱的适用性研究

扫码查看
为研究陆地表面温度及其衍生指标反演我国大陆土壤水分的适用性,基于 Z-score 标准化和相关性分析方法,确定了最优陆地表面温度指标,再基于列联表评估最优指标监测 2000-2019 年 4 至 10 月干旱的适用性.结果表明:对各种土地覆盖类型,陆地表面温度和土壤水分的相关性最强;在耕地和草地覆盖的半干旱半湿润区,相关性值可达 0.7 以上,陆地表面温度可以很好地反演中等水分胁迫区域植被根区的土壤水分.陆地表面温度可以监测至少 1/4 的非随机可预测极端干旱事件,探测率和虚警率分别为 0.37和 0.12.因此,陆地表面温度可被用于反演大尺度土壤水分并监测干旱.
Research on the Suitability of Land Surface Temperature for Retrieving Soil Moisture and Monitoring Drought
In order to study the suitability of Land Surface Temperature(LST)and its derived indicators for retrieving the Soil Moisture(SM)in Chinese mainland,the optimal LST indexes are determined by the Z-score standardization and correlation analysis methods,and the optimal LST indexes are evaluated based on the contingency table to monitor droughts from Apr.to Oct.in 2000-2019.The results show that the correlation between LST and SMis the strongest for various land cover types,and the Pearson correlation coefficient values reach over 0.7 in the semi-arid and semi-humid areas covered by cultivated land and grassland.LST can effectively retrieve SMin the root zone of vegetation in areas with moderate water stress,and it can monitor at least one-fourth of non-random and predictable extreme drought events with the mean values of probability of detection and probability of false detection being 0.37 and 0.12,respectively.Therefore,LST can be viewed as a relatively robust index for retrieving SM and monitoring drought on a large region.

remote sensing drought monitoringLSTSMZ-score standardizationPearson correlation coefficientcontingency table

尹磊、李佳乐、李玉、谷洪彪、赵嘉恒、曹晖、袁卢铁彬

展开 >

防灾科技学院,河北 三河 065201

辽宁工程技术大学测绘与地理科学学院,辽宁 阜新 123000

南京工业大学交通运输工程学院,江苏 南京 211816

遥感干旱监测 陆地表面温度 土壤水分 Z-score标准化 Pearson相关系数 列联表

廊坊市科学技术研究与发展计划自筹经费项目大学生创新创业训练计划项目辽宁省自然科学基金计划(面上项目)辽宁省教育厅项目重点攻关项目

2023013095X2023117751232022-MS-400LJ2020ZD003

2024

防灾科技学院学报
中国灾害防御协会 防灾科技学院

防灾科技学院学报

影响因子:0.496
ISSN:1673-8047
年,卷(期):2024.26(1)
  • 34