首页|基于机器学习模型的三明市强降雨滑坡易发性评价

基于机器学习模型的三明市强降雨滑坡易发性评价

扫码查看
开展滑坡易发性评价是开展区域地质灾害风险管理的基础性工作,以福建省三明市东南山区为研究对象,选取高程、坡向、坡度、曲率、岩性、归一化植被指数、平均降雨量、距断层距离、距道路距离和距水系距离10个影响因子,利用逻辑回归模型、随机森林模型进行滑坡易发性评价,并将模型评价结果分为极低、低、中、高和极高5个易发性等级区划,高和极高易发区主要分布在偏东北方向.研究结果表明:逻辑回归模型的AUC值为0.830、随机森林模型的AUC值为0.862,两个模型的合理性和准确度均符合与历史滑坡点基本一致的要求,随机森林模型的预测精度更高且泛化能力更好.
Evaluation of Landslide Susceptibility to Heavy Rainfall in Sanming City,Fujian Province Based on Machine Learning Modeling
The evaluation of landslide susceptibility is a fundamental work of regional geohazard risk management.Taking the southeastern mountainous area of Sanming City in Fujian Province as the research object,we select ten influence factors,such as elevation,slope direction,slope gradient,curvature,lithology,normalized vegetation index,average rainfall,distance from faults,distance from roads,and distance from water systems,and then evaluate the landslide susceptibility by using the logistic regression model and the random forest model.The evaluation results of the model are categorized into five susceptibility level zones,namely lower,low,medium,high and higher,with the high and higher susceptibility zones being mainly located in the northeastern direction of the study area.As the study shows,AUC values of the logistic regression model and the random forest model are 0.830 and 0.862 respectively.The plausibility and accuracy of two models meet the requirement of general consistency with historical landslides,and the prediction accuracy of the random forest model is higher and the generalization ability of it is better.

Fujian ProvinceSanming Citylandslide susceptibility assessmentrandom forestlogistic regression

张柯月、崔玉龙、许冲、钱志冲

展开 >

安徽理工大学土木建筑学院,安徽淮南 232001

应急管理部国家自然灾害防治研究院地质灾害研究中心,北京 1000852

福建省 三明市 滑坡易发性评价 随机森林 逻辑回归

2024

防灾科技学院学报
中国灾害防御协会 防灾科技学院

防灾科技学院学报

影响因子:0.496
ISSN:1673-8047
年,卷(期):2024.26(3)