首页|超低剂量胸部CT不同重建算法对肺炎定量及图像质量的影响

超低剂量胸部CT不同重建算法对肺炎定量及图像质量的影响

扫码查看
目的 探讨胸部超低剂量CT扫描条件下滤波反投影、自适应统计迭代重建、深度学习图像重建(DLIR)等不同重建算法对人工智能影像辅助肺炎定量分析(uAI-Discover-NCP)和图像质量的影响。方法 纳入陕西中医药大学附属医院2023年7月~2023年12月就诊的43例肺炎复查患者,采用个性化超低剂量CT扫描,原始数据分别采用滤波反投影、40%强度的自适应统计迭代重建、不同强度DLIR(DLIR-M、DLIR-H)、在DLIR-H处理上叠加E2的边缘强化(DLIR-H+E2)重建图像,共获得5组图像。测量5组图像空气、肺组织、胸主动脉、左肩胛下肌、胸10椎体的CT值、噪声值,计算信噪比。2位医师对5组图像肺整体质量及肺炎显示进行5分制主观评分。将图像导入CT影像辅助肺炎定量分析软件进行独立分析,记录肺炎指数、肺炎体积及肺炎体积百分比、肺炎质量及肺炎质量百分比。采用重复测量方差分析或Friedman秩和检验比较各组定量参数及主观评分的差异。结果 5组图像在肺实质、胸主动脉、左肩胛下肌、胸10椎体组织CT值差异均无统计学意义(P>0。05);而各组织噪声及信噪比的总体差异均有统计学意义(P<0。05),其中DLIR-H组的图像噪声最低、信噪比最高,与其他4组相比,差异均有统计学意义(P<0。05)。2位医师对各组图像的主观评分一致性高(Kappa=0。811~0。894),5组图像的整体图像质量、肺炎显示评分总体差异有统计学意义(P<0。001),DLIR-H与DLIR-H+E2组整体图像质量、肺炎显示主观评分最高,组间差异无统计学意义(P>0。05)。5个肺炎定量参数(肺炎指数、肺炎体积及肺炎体积百分比、肺炎质量及肺炎质量百分比)组间总体差异均无统计学意义(P>0。05)。结论 超低剂量扫描条件下,影像辅助肺炎定量分析结果不受重建算法的影响。与滤波反投影、自适应统计迭代重建40%相比,高强度深度学习图像重建能显著降低图像噪声、明显提升图像质量,在临床诊断有较大的优势。
Effect of different reconstruction algorithms for ultra-low dose chest CT on quantitative detection of pneumonia and image quality
Objective To investigate the effect of different image reconstruction algorithms,including filtered back projection,adaptive statistical iterative reconstruction V and deep learning image reconstruction(DLIR)on AI-assisted quantitative analysis of pneumonia(uAI-Discover-NCP)and image quality under ultra-low dose chest CT scanning conditions.Methods Fourty-three patients undergoing follow-up for pneumonia from July to December 2023 at the Affiliated Hospital of Shaanxi University of Chinese Medicine were included in this study.Each patient underwent personalized ultra-low dose CT scanning.The raw data were reconstructed using filtered back projection,40%intensity adaptive statistical iterative reconstruction V,various intensities of DLIR(DLIR-M,DLIR-H),and DLIR-H with additional E2 edge enhancement(DLIR-H+E2),resulting in five groups of images.Measurements were taken for CT values and noise values in the ROIs-air,lung tissue,thoracic aorta,left subscapularis muscle,and thoracic vertebra 10.The signal-to-noise ratio was calculated.Two physicians subjectively rated the overall quality and pneumonia presentation of the five groups of images on a 5-point scale.The images were independently analyzed using CT image-assisted pneumonia quantitative analysis software,recording pneumonia index,pneumonia volume and its percentage,and pneumonia quality and its percentage.Repeated measures ANOVA or Friedman's rank-sum test were used to compare quantitative parameters and subjective scores among groups.Results There was no significant difference in CT values of the lung parenchyma,thoracic aorta,left subscapularis muscle,and thoracic vertebra 10 across the five image groups(P>0.05).However,differences in noise values and signal-to-noise ratio among tissues were statistically significant(P<0.05),with the DLIR-H group demonstrating the lowest image noise and highest signal-to-noise ratio,significantly outperforming the others four groups(P<0.05).The consistency of subjective scoring by the two physicians was high(Kappa=0.811-0.894).There was a significant difference in overall image quality and pneumonia presentation scores across the five groups(P<0.001),with the highest scores in the DLIR-H and DLIR-H+E2 groups,although the difference between these groups was not significant(P>0.05).There was no significant difference in the overall variation of the five pneumonia quantitative parameters among the groups(P>0.05).Conclusion Under ultra-low dose scanning conditions,AI-assisted quantitative analysis of pneumonia is not affected by the reconstruction algorithm.Compared to filtered back projection and 40%adaptive statistical iterative reconstruction V,high-intensity DLIR significantly reduces image noise and noticeably improves image quality,offering substantial clinical diagnostic advantages.

deep learning image reconstructionimage qualitypneumoniaartificial intelligencebody lever photography

陈伟婷、马光明、何立宇、杨璐、金晨望

展开 >

陕西中医药大学医学技术学院,陕西 咸阳 712046

陕西中医药大学附属医院医学影像科,陕西 咸阳 712000

西安交通大学第一附属医院医学影像科,陕西 西安 710000

深度学习图像重建 图像质量 肺炎 人工智能 体层摄影术

咸阳市重点研发计划

L2023-ZDYF-SF-048

2024

分子影像学杂志
南方医科大学

分子影像学杂志

CSTPCD
ISSN:1674-4500
年,卷(期):2024.47(3)
  • 4