首页|基于光谱CT各参数的甲状腺良恶性结节学习模型的构建及应用

基于光谱CT各参数的甲状腺良恶性结节学习模型的构建及应用

Construction and application of thyroid nodule malignancy prediction model based on various parameters from spectral CT

扫码查看
目的 分析基于光谱CT各参数构建的机器学习模型预测甲状腺良恶性结节的可行性.方法 回顾性分析2021年9月~2022年12月经手术病理证实的185例甲状腺结节患者资料.根据病理结果将患者分为恶性结节组(n=106)及良性结节组(n=79),提取10个光谱CT参数构建6种机器学习模型,通过ROC曲线评价各模型预测甲状腺结节良恶性的效能,比较模型曲线下面积的差异.结果 预测甲状腺良恶性结节的极端梯度提升、随机森林、支持向量机、K最近邻学习模型、逻辑回归及决策树的AUC值分别为0.833、0.814、0.813、0.807、0.799、0.776,敏感度分别为0.833、0.833、0.800、0.733、0.767、0.733,特异度分别为0.808、0.769、0.731、0.846、0.808、0.731,准确度分别为0.821、0.804、0.768、0.786、0.786、0.732.结论 基于光谱CT各参数构建预测甲状腺良恶性结节的学习模型效能较好,最优预测模型为XGBoost.
Objective To observe the feasibility of machine learning models constructed based on various parameters of spectral CT in predicting the benign and malignant nature of thyroid nodules. Methods A total of 185 patients with thyroid nodules confirmed by surgical pathology from September 2021 to December 2022 were analyzed retrospectively. According to the pathological results, the patients were divided into malignant nodules group (n=106) and benign nodules group (n=79). Ten spectral CT parameters were extracted to establish six machine learning models. The performance of each model in predicting the benign and malignant nature of thyroid nodules was evaluated through ROC curves, and the differences in AUC of the model were compared. Results The AUC values of extreme gradient boosting, random forest, support vector machine, K-nearest neighbors, Logistic regression and decision tree models for predicting thyroid nodule malignancy were 0.833, 0.814, 0.813, 0.807, 0.799, 0.776, respectively. Their sensitivities were 0.833, 0.833, 0.800, 0.733, 0.767, 0.733, their specificities were 0.808, 0.769, 0.731, 0.846, 0.808, 0.731, their accuracies were 0.821, 0.804, 0.768, 0.786, 0.786, 0.732. Conclusion The learning models based on the parameters from spectral CT to predict benign and malignant thyroid nodules had good overall performance, the optimal prediction model was XGBoost.

thyroid nodulesthyroid cancerspectral CTXGBoostenergy spectrum curve

李炜、王金花、杨忠现、刘于宝

展开 >

南方医科大学深圳医院医学影像中心,广东 深圳 518100

南方医科大学第三临床医学院,广东 广州510500

深圳市宝安区福永人民医院放射科,广东 深圳 518103

甲状腺结节 甲状腺癌 光谱CT XGBoost 能谱曲线

深圳市科技计划资助项目

JCYJ20230807142308018

2024

分子影像学杂志
南方医科大学

分子影像学杂志

CSTPCD
ISSN:1674-4500
年,卷(期):2024.47(6)
  • 2