首页|影像组学及深度学习在预测乳腺癌腋窝淋巴结转移中的研究进展

影像组学及深度学习在预测乳腺癌腋窝淋巴结转移中的研究进展

扫码查看
乳腺癌是女性最常见的恶性肿瘤之一,腋窝淋巴结状态对于肿瘤临床分期、治疗决策及预后等起决定性作用。前哨淋巴结活检术和腋窝淋巴结清扫术是当前腋窝淋巴结状态评估的金标准,但其均为有创性检查且存在多种术后并发症。因此,术前无创性评估腋窝淋巴结状态对临床治疗决策至关重要。影像组学和深度学习技术通过高通量地提取影像组学特征来预测肿瘤的生物学行为,具有可重复性、无创性及客观性等特点,现已广泛应用于乳腺癌诊断、淋巴结转移评估及预后评估等方面。本文基于数字乳腺X线成像及MRI的影像组学和深度学习技术在预测乳腺癌腋窝淋巴结转移中的研究进展予以综述,以期为临床个体化精准医疗提供新思路。
Research progress of radiomics and deep learning in predicting axillary lymph node metastasis in breast cancer
Breast cancer is one of the most prevalent malignant tumors in women,and the status of axillary lymph nodes plays a decisive role in clinical staging,treatment decision-making,and prognosis of the tumor.Sentinel lymph node biopsy and axillary lymph node dissection are currently the gold standards for evaluating the status of axillary lymph nodes,but both are invasive procedures with various postoperative complications.Therefore,preoperative non-invasive assessment of axillary lymph nodes status is crucial for clinical treatment decision-making.Radiomics and deep learning techniques predict the biological behavior of tumors by extracting high-throughput radiomics features,characterized by reproducibility,non-invasiveness,and objectivity.They have been widely used in the diagnosis of breast cancer,evaluation of lymph node metastasis,and prognosis assessment.This article summarizes the research progress of radiomics and deep learning techniques based on digital mammography and MRI in predicting axillary lymph node metastasis in breast cancer,aiming to provide new ideas for clinical individualized precision medicine.

breast canceraxillary lymph nodemagnetic resonance imagingdigital mammographyradiomicsdeep learning

钱昕毓、柴圣杰、葛丽红

展开 >

内蒙古医科大学附属医院放射科,内蒙古 呼和浩特 010050

乳腺癌 腋窝淋巴结 磁共振成像 乳腺X线成像 影像组学 深度学习

内蒙古自治区呼和浩特市内蒙古医科大学青年项目

YKD2022QN013

2024

分子影像学杂志
南方医科大学

分子影像学杂志

CSTPCD
ISSN:1674-4500
年,卷(期):2024.47(9)