分子影像学杂志2024,Vol.47Issue(10) :1091-1095.

噪声指数联合深度学习图像重建对肺部CT图像质量和辐射剂量的影响

Impact of noise index combined with deep learning image reconstruction on image quality and radiation dose

李鑫 徐龙 贾永军 于楠 于勇 段海峰
分子影像学杂志2024,Vol.47Issue(10) :1091-1095.

噪声指数联合深度学习图像重建对肺部CT图像质量和辐射剂量的影响

Impact of noise index combined with deep learning image reconstruction on image quality and radiation dose

李鑫 1徐龙 1贾永军 2于楠 2于勇 2段海峰3
扫码查看

作者信息

  • 1. 陕西中医药大学医学技术学院,陕西 咸阳 712000
  • 2. 陕西中医药大学附属医院医学影像科,陕西 咸阳 712000
  • 3. 陕西中医药大学医学技术学院,陕西 咸阳 712000;陕西中医药大学附属医院医学影像科,陕西 咸阳 712000
  • 折叠

摘要

目的 探讨深度学习图像重建(DLIR)在超低剂量肺部CT成像中的应用价值.方法 选取2024年3~4月在陕西中医药大学附属医院行肺部CT平扫患者66例.所有患者均采用GE Revolution CT扫描,固定管电压100 kVp,第1次采用噪声指数(NI)=15的常规辐射剂量扫描,滤波反投影算法重建图像;第2次采用NI=45的超低辐射剂量扫描,中、高等强度深度学习图像重建(DLIR-M、DLIR-H)进行对比.在3组重建图像上测量左上肺乏血供区域CT值与标准差值(SD),SD代表噪声,计算信噪比(SNR).由2位放射科诊断医师采用5分法进行主观评价,比较3组客观数值和主观评分.结果 NI=45组约减少93.7%辐射剂量;DLIR强度影响超低剂量条件下客观指标,DLIR-H较DLIR-M有更低的噪声,更高的SNR(P<0.05);2位医师对3组图像质量一致性评价好(Kappa值为0.952、0.846、0.903);对比3组图像质量评分、图像合格率及满意率,差异无统计学意义(P>0.05).结论 在减少93.7%辐射剂量条件下,DLIR能够获得与常规剂量接近的肺部图像,进一步减低了肺部疾病筛查的辐射剂量.

Abstract

Objective To explore the application value of Deep learning image reconstruction(DLIR)in ultra-low-dose chest CT imaging.Methods A total of 66 patients with chest CT scans in the Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine from March to April 2024 were collected.All patients were used GE Revolution CT scans,the fixed tube voltage was 100 kVp,and the first with conventional radiation dose with noise index(NI)=15,and filtered back projection reconstructed images;the second was scanned with ultra-low-dose with NI=45,and medium and high intensity deep learning image reconstruction(DLIR-M、DLIR-H)were compared.The CT value and standard deviation(SD)of the left upper pulmonary hypovascular region were measured on three reconstructed images,SD represented noise,and the signal-to-noise ratio(SNR)was calculated.Subjective evaluation of 5-point method was used by two radiologists.The objective value and subjective score of three reconstructed images were compared.Results The NI=45 group reducted the radiation dose by 93.7%.The intensity of DLIR affected the objective value under ultra-low-dose condition,DLIR-H resulted in ower noise and higher SNR than DLIR-M(P<0.05).Two physicians evaluated the image quality consistency of the three reconstructed images(Kappa=0.952,0.846,0.903).The image quality scores,pass rates and satisfaction rates had no significant differences between three groups(P>0.05).Conclusion Under the condition of reducing the radiation dose by 93.7%,DLIR can obtain images of the lung that are close to the conventional radiation dose,and the radiation dose for lung disease screening has been further reduced.

关键词

超低剂量/肺部CT/深度学习/图像质量/辐射剂量

Key words

ultra-low dose/lung CT/deep learning/image quality/radiation dose

引用本文复制引用

基金项目

陕西省教育厅青年创新团队科研计划项目(23JP036)

出版年

2024
分子影像学杂志
南方医科大学

分子影像学杂志

CSTPCD
ISSN:1674-4500
段落导航相关论文