首页|甲状腺结节良恶性鉴别诊断:基于超声可解释性机器学习模型

甲状腺结节良恶性鉴别诊断:基于超声可解释性机器学习模型

扫码查看
目的 探讨基于二维超声及剪切波弹性成像(SWE)结合XGBoost机器学习模型在甲状腺结节良恶性鉴别诊断中的创新性及有效性。方法 分析2021年5月~2022年9月于安徽医科大学第一附属医院北区就诊扫156例甲状腺结节患者(共209个结节)的二维超声图像及SWE测值,以病理为金标准,使用XGBoost算法,建立基于二维超声特征和SWE的机器学习模型。使用Shapley加性解释方法评估特征重要性。绘制ROC曲线,计算ROC曲线下面积,评估XGBoost模型和SWE的诊断效能。采用决策曲线分析和校准曲线用于评估XGBoost模型的应用价值及诊断效能。结果 XGBoost模型在训练队列诊断甲状腺结节良恶性的曲线下面积、准确度、敏感度、特异度、阳性预测值、阴性预测值分别为0。890、0。776、89。6%、65。7%、83。3%、76。7%;在验证队列分别为0。913、0。788、92。7%、64。9%、82。9%、82。8%。决策曲线分析及校准曲线分析显示,XGBoost模型在诊断甲状腺结节良恶性方面展现出了良好的临床应用价值,以及高准确性和可靠性。结论 基于二维超声特征及SWE的XGBoost机器学习模型在甲状腺结节良恶性鉴别诊断中具有重要应用价值,为临床决策提供了新的高效工具。
Differential diagnosis of benign and malignant thyroid nodules:based on an interpretable ultrasound machine learning model
Objective To investigate the innovation and effectiveness of two-dimensional ultrasonography and shear wave elastography(SWE)combined with the XGBoost machine learning model in the differential diagnosis of benign and malignant thyroid nodules.Methods 2D-ultrasound images and SWE measurements were analyzed in 156 patients with thyroid nodules(209 nodules)from the North District of the First Affiliated Hospital of Anhui Medical University from May 2021 to September 2022 with pathology as the gold standard.A machine learning model based on two-dimensional ultrasonography and SWE was developed using the XGBoost algorithm.The feature importance was assessed using the Shapley additive interpretation method.ROC curves were plotted,and the AUC was calculated to assess the performance of the XGBoost model and SWE.Additionally,decision curve analysis and calibration curves were used to evaluate the application value and diagnostic efficacy of the XGBoost model.Results The AUC,accuracy,sensitivity,specificity,positive predictive value,and negative predictive value of the XGBoost model in the diagnosis of benign and malignant thyroid nodules were 0.890,0.776,89.6%,65.7%,83.3%,76.7%in the training cohort and 0.913,0.788,92.7%,64.9%,82.9%,82.8%in the validation cohort,respectively.Decision curve analysis and calibration curve analysis showed that the XGBoost model showed good clinical application value in the diagnosis of benign and malignant thyroid nodules,as well as high accuracy and reliability.Conclusion The XGBoost machine learning model based on two-dimensional ultrasound features and SWE has important application value in the differential diagnosis of benign and malignant thyroid nodules and provides a new and efficient tool for clinical decision-making.

elastographymachine learningdifferential diagnosisthyroid nodule

陈冬冬、解翔、詹小林、虞红珍、周燕、陈芳

展开 >

安徽医科大学第二附属医院 超声科,安徽 合肥 230000

安徽医科大学第一附属医院北区(安徽省公共卫生临床中心)超声科,安徽 合肥 230000

安徽医科大学第二附属医院 病理科,安徽 合肥 230000

弹性成像 机器学习 鉴别诊断 甲状腺结节

2024

分子影像学杂志
南方医科大学

分子影像学杂志

CSTPCD
ISSN:1674-4500
年,卷(期):2024.47(12)