首页|深度学习和磁共振黑血血栓成像可用于下肢深静脉血栓分期预测

深度学习和磁共振黑血血栓成像可用于下肢深静脉血栓分期预测

扫码查看
目的 基于深度学习和磁共振黑血血栓成像(BTI)构建下肢深静脉血栓(DVT)的分期预测模型,并探讨其分期预测性能.方法 回顾性收集2015年11月~2022年7月在广州市番禺区中心医院检查的196例患者的检查信息和BTI图像信息,随机性将数据集划分为3个部分:训练集占约70%(n=136),验证集与测试集各约占15%(n=30).手动对实验组图像进行人工勾画矩形框,然后将对应的病变区域最小外接矩形框进行裁剪、统一尺寸、切片并输入深度学习模型中,基于ResNet50、ViT和EfficientNet构建3个下肢DVT分期预测模型,计算准确率、曲线下面积评估其预测性能.结果 ResNet50、ViT和EfficientNet-b0在测试集上的准确度分别为0.693、0.733、0.787,EfficientNet-b0在测试集上展现出了最优的分类性能;在急性期、亚急性期及慢性期的曲线下面积分别为0.700(0.568~0.811)、0.778(0.652~0.875)、0.850(0.737~0.914).结论 结合磁共振黑血血栓成像图像,利用深度学习预测模型在DVT分期预测中具有一定的应用价值,这为DVT的精准分期提供了一个有效的技术路径.
Deep learning and black-blood magnetic resonance thrombus imaging can be used for predicting the staging of deep vein thrombosis in the lower limbs
Objective To construct a staging prediction model on deep vein thrombosis(DVT)based on the deep learning and black-blood magnetic resonance thrombus imaging(BTI),and investigate its prediction value.Methods A retrospective observational study was conducted,where clinical data and BTI from 196 patients admitted to Guangzhou Panyu Central Hospital from November 2015 to July 2022 were collected and analyzed.The dataset was split into a training set(70%,n=136),a validation set(15%,n=30),and a test set(15%,n=30).The experimental group were annotated in rectangular boxes manually,then the corresponding minimum bounding rectangular boxes of the lesion areas were cropped,resized,and sliced,and input to the deep learning model.The three models,ResNet50,Vit and EfficientNet,were established for lower limb staging prediction.Their predict value were compared by accuracy rate and the area under the curve(AUC).Results The accuracy of ResNet50,Vit and EfficientNet-b0 in the testing set were 0.693,0.733,0.787.The EfficientNet-b0 outperforms than other two models in the test set.The area under the curve of the acute,sub-acute and chronic phase were 0.700(0.568-0.811),0.778(0.652-0.875),0.850(0.737-0.914),respectively.Conclusion Deep learning combined with BTI has certain application values in staging prediction of DVT.It provides an effective technique for the precisive staging for DVT.

deep learningMRIlower limbs deep vein thrombosisthrombosis staging

段丽芬、叶裕丰、陈秋梅、郭广源、黄益

展开 >

广州医科大学附属番禺中心医院 放射科,广东 广州 511400

广州市番禺区妇幼保健院超声科,广东 广州 511499

广州医科大学附属番禺中心医院 微创介入科,广东 广州 511400

深度学习 磁共振成像 下肢深静脉血栓 血栓分期

2024

分子影像学杂志
南方医科大学

分子影像学杂志

CSTPCD
ISSN:1674-4500
年,卷(期):2024.47(12)