首页|核酸检测Ct值在COVID?19重症风险预测模型构建的应用价值研究

核酸检测Ct值在COVID?19重症风险预测模型构建的应用价值研究

扫码查看
目的 验证荧光PCR测量的循环阈值(Ct值)对COVID⁃19患者重症风险评估的应用价值,并结合其它生化指标构建一个预测模型.方法 通过对山东大学附属威海市立医院236例COVID⁃19住院患者的回顾性分析(2022年12月至2023年5月),收集病毒核酸检测Ct值及常规检验指标.利用Logistic回归分析筛选影响重症风险因素,并构建预测模型.采用受试者工作特征曲线(ROC)和临床决策曲线(DCA)评估模型性能,并量化Ct值的贡献度.结果 年龄、白细胞计数、血小板、血红蛋白升高与重症风险正相关;较高的首次核酸检测阳性Ct值与重症风险负相关.COVID⁃19重症肺炎风险预测模型提示,年龄较大、PLT和WBC水平较高,以及Ct值和HGB较低的患者,重症化的风险显著增加.模型拟合度良好,AIC、C⁃index、R2 和霍斯默检验的P值分别为126.00、0.90、0.51和0.53.相较仅含临床指标的模型,含Ct值的模型的ROC下面积(AUC)值在训练集和验证集分别从0.84和0.89提升至0.93和0.97,灵敏度从0.71和0.78增加为0.86和1.00,特异度从0.82和0.87上升到0.87和0.92.DCA结果验证了组合模型的临床应用价值.结论 Ct值是评估COVID⁃19患者重症风险的重要指标,本研究所构建的预测模型为患者的早期诊治提供了创新且有效的工具.
Application of Ct value of nucleic acid testing in the construction of COVID?19 severe risk prediction model
Objective To investigate the prognostic value of Ct values from fluorescence PCR in COVID⁃19 severity assessment and to construct a severity risk prediction model integrating Ct values with bio⁃chemical markers.Methods A retrospective study was conducted on 236 COVID⁃19 hospitalized patients from Weihai Municipal Hospital affiliated with Shandong University from December 2022 to May 2023.Ct values and routine laboratory parameters were collected and logistic regression was utilized to identify factors influenc⁃ing the risk of severity,aiding in the creation of a prediction model.The model's effectiveness was assessed by plotting the receiver operating characteristic(ROC)curve and the Clinical Decision Curve Analysis(DCA),as well as quantifying contribution of the Ct values.Results The increase in age,white blood cell count,plate⁃lets,and hemoglobin as well as the decrease in Ct value,showed positive correlations with a higher risk of se⁃vere COVID⁃19.The COVID⁃19 severe pneumonia risk prediction model suggests that older patients with higher PLT and WBC levels,and Ct and HGB values,have a significantly increased risk of exacerbation.The model demonstrated strong fitness,as indicated by an AIC of 126.00,a C⁃index of 0.90,an R2 of 0.51 and an HL⁃test P⁃value of 0.53.The model incorporating Ct values outperformed the clinical⁃only model,showing im⁃proved AUC,sensitivity and specificity from 0.84 to 0.93,0.71 to 0.86,0.78 to 1.00 in the training set,and from 0.89 to 0.97,0.82 to 0.87,0.87 to 0.92 in the validation set,respectively.The DCA demonstrated the model's superior clinical utility.Conclusion Ct values are important for assessing the risk of severe COVID⁃19.The established model provides an efficacious early diagnostic and therapeutic tool.

SARS-CoV-2COVID-19CtSevere disease riskPrediction model

高立卉、孙敏、吴昀睿、谭瑾琳、阮则凡、谢龙

展开 >

山东大学附属威海市立医院感染性疾病科,山东,威海 264200

广州达安基因股份有限公司研究院,广东,广州 510665

SARS⁃CoV⁃2 COVID⁃19 Ct值 重症风险 预测模型

国家重点研发计划项目

2023YFC304700

2024

分子诊断与治疗杂志
中山大学

分子诊断与治疗杂志

CSTPCD
影响因子:0.65
ISSN:1674-6929
年,卷(期):2024.16(10)