首页|基于迁移学习的小样本血腥暴力图片识别算法研究

基于迁移学习的小样本血腥暴力图片识别算法研究

扫码查看
当前,血腥暴力图片识别存在样本不足且分布不均衡的问题,致使传统的神经网络方法不能快速准确地识别.针对此问题,提出了一种基于迁移学习的ECA-FOCALLOSS-RESNET50小样本不良图片识别算法.首先,引入轻量级的高效通道注意力机制ECA模块,在涉及少量参数的前提下,避免了传统注意力机制降维带来的特征丢失,训练样本不足却具有明显的效果增益;其次,通过改进损失函数,有效地解决了小样本不良图片样本不均的问题;最后,通过迁移学习引入预训练,在自建数据集上进行参数微调,以缓解样本不足带来的过拟合现象.结果表明,在自建数据集上,基于迁移学习的ECA-FOCALLOSS-RESNET50小样本血腥暴力不良图片识别技术将识别准确率提升了2.92%.AUC值提升了0.023 1%,为维护互联网清朗提供了技术方法.
Research on Small Sample Bloody Violence Image Recognition Algorithm Based on Transfer Learning
Currently,traditional neural network method cannot quickly and accurately recognize the bloody and violent images when the samples are insufficient or uneven distributed.To solve this problem,an ECA-FOCALLOSS-RESNET50 small sample bad pictures recognition algorithm based on transfer learning is proposed.Firstly,the lightweight and efficient channel attention mechanism ECA module is introduced,which avoids the feature loss caused by the dimensionality reduction of the traditional atten-tion mechanism under the premise of involving a small number of parameters.This method has obvious effect gain with insufficient training samples.Secondly,by improving the loss function,the problem of uneven samples of bad images with small samples is effectively solved.Finally,pre-training is introduced by transfer learning,and parameters fine-tune on the self-built data set to alleviate the overfitting phe-nomenon caused by insufficient samples.The results show that the transfer learn-based ECA-FOCAL-LOSS-RESNET50 small sample bad pictures recognition technology can improve the recognition accuracy by 2.92%and the AUC value by 0.023 1 on the self-built data set,which provides a technical method for maintaining the clean Internet.

image classificationattention mechanismresidual networkbad imagebloody violence

郝志英、袁得嵛

展开 >

中国人民公安大学信息网络安全学院,北京 100038

河南省新乡市高新技术产业开发区分局网络安全保卫大队,河南新乡 453000

图像分类 注意力机制 残差网络 不良图片 血腥暴力

国家社会科学基金重点项目

20AZD114

2024

中国人民公安大学学报(自然科学版)
中国人民公安大学

中国人民公安大学学报(自然科学版)

影响因子:0.33
ISSN:1007-1784
年,卷(期):2024.30(1)
  • 30