首页|基于BERT-CLS-ATT模型的虚拟主播评论情感分类算法

基于BERT-CLS-ATT模型的虚拟主播评论情感分类算法

扫码查看
视频网络平台哔哩哔哩的网络直播正处于蓬勃发展阶段.其中,虚拟主播作为一种独特的网络主播分类也呈现出快速发展的趋势.然而,目前虚拟主播发展面临缺乏直观的数据分析、缺乏高效抓住热点直播内容的方法以及缺乏规避具有争议性的内容的方法等问题.因此,拟引入文本分类算法来解决这些问题.针对虚拟主播评论文本的相关特点,基于增量领域数据全词预训练的BERT预训练模型和注意力机制,提出了BERT-CLS-ATT的文本情感分类模型.BERT-CLS-ATT模型很好解决了虚拟主播评论文本的情感分类任务;然后,采用TF-IDF文本关键词提取算法,对情感分类结果的文本分别提取关键词.最后,结合情感分类的结果和提取的关键词来对虚拟主播账号的运营进行科学的指导.实验结果表明,该模型方法在虚拟主播评论文本的情感分类任务上实现了83%以上的F1值和84%以上的准确度.通过在公开的数据集上的进一步实验,结果表明,BERT-CLS-ATT模型结构在文本的情感分类任务上具有一定的泛用性.
Sentiment Classification Algorithm for Vtuber Comments Based on BERT-CLS-ATT Model
The webcasting of the video network platform BiLiBiLi is in a booming stage.Among them,Vtuber as a unique classification of webcasters,also shows a trend of rapid development.However,the development of Vtuber is currently facing some limitations,such as lack of intuitive data analysis,lack of efficient methods to grasp hot live content,and lack of methods to avoid controversial content.Therefore,a text classification algorithm is proposed to solve these problems.Aiming at the relevant features of Vtu-ber comments,a BERT-CLS-ATT text sentiment classification model is proposed based on the BERT pre-trained model with whole-word pre-training of incremental domain data and the attention mechanism.The BERT-CLS-ATT model well solves the task of sentiment classification of Vtuber comment texts;Then TF-IDF text keyword extraction algorithm is used to extract keywords for the text of sentiment classification re-sults.Finally,the results of sentiment classification and the extracted keywords are combined to provide scientific guidance for the operation of Vtuber accounts.The experimental results show that the modeling approach achieves more than 83%F1 value and more than 84%accuracy in the task of sentiment classi-fication of Vtuber comment texts.Further experimental results on public datasets show that the BERT-CLS-ATT model structure has a certain universality in the sentiment classification task of texts.

text sentiment classificationdeep learningpre-trained modelattention mechanism

卢辉鸿、马平、王肖

展开 >

北京航空航天大学软件学院,北京 100191

盘山县国泰建筑工程有限公司,辽宁盘锦 124100

文本情感分类 深度学习 预训练模型 注意力机制

2024

中国人民公安大学学报(自然科学版)
中国人民公安大学

中国人民公安大学学报(自然科学版)

影响因子:0.33
ISSN:1007-1784
年,卷(期):2024.30(1)
  • 12