首页|基于混合神经网络的社交媒体攻击性言论识别方法研究

基于混合神经网络的社交媒体攻击性言论识别方法研究

扫码查看
在社交媒体攻击性言论识别任务中,现有研究未能充分发挥不同神经网络的潜力和优势,导致识别准确度受限.针对上述问题,提出一种融合BERT预训练模型、双向长短期记忆网络(BiLSTM)、自注意力机制(SA)以及多尺度卷积神经网络(MCNN)的攻击性言论识别模型(BERT-BiLSTM-SA-MCNN).首先,利用BERT预训练模型对输入文本数据进行编码转换;其次,通过BiLSTM网络与自注意力机制捕获文本的全局语义特征;再次,借助多尺度卷积神经网络提取文本中的重要局部特征;最后,通过全连接层进行攻击性言论的分类识别.实验结果表明,BERT-BiLSTM-SA-MCNN模型在社交媒体攻击性言论识别任务中表现出较好的性能,准确率、精确率、召回率和F1值分别达到86.67%、84.20%、89.74%和86.79%,具有较高的准确性和泛化能力.
Research on Recognition Method of Offensive Speech in Social Media Based on Hybrid Neural Networks
In the task of offensive speech recognition in social media,the existing research fails to give full play to the potential and advantages of different neural networks,resulting in limited recognition ac-curacy.To address this issue,an offensive speech recognition model(BERT-BiLSTM-SA-MCNN)was proposed,which integrated the BERT pre-trained model,Bidirectional Long Short-Term Memory net-works(BiLSTM),self-attention mechanisms(SA),and Multiscale Convolutional Neural Networks(MC-NN).Initially,the BERT pre-trained model was used to encode and convert the input text data.Subse-quently,the BiLSTM network and self-attention mechanism were employed to capture the global semantic features of the text.Thirdly,the Multiscale Convolutional Neural Network was utilized to extract impor-tant local features within the text.Finally,a fully connected layer was applied for the classification and i-dentification of offensive speech.Experimental results demonstrate that the BERT-BiLSTM-SA-MCNN model exhibits superior performance in the task of recognition of offensive speech in social media,achie-ving an accuracy rate,precision,recall and F1 score of 86.67%,84.20%,89.74%,and 86.79%,respectively,with higher accuracy and generalization capabilities.

offensive speech recognitiontext classificationhybrid neural networkBERTself-attention mechanism

韩坤、潘宏鹏、刘忠轶

展开 >

中国人民公安大学公安管理学院,北京 100038

攻击性言论识别 文本分类 混合神经网络 BERT 自注意力机制

北京市社会科学基金重点项目中国人民公安大学公安学一流学科培优行动及公共安全行为科学实验室建设项目

22GLA0112023ZB02

2024

中国人民公安大学学报(自然科学版)
中国人民公安大学

中国人民公安大学学报(自然科学版)

影响因子:0.33
ISSN:1007-1784
年,卷(期):2024.30(2)
  • 1