首页|基于无监督t-SNE算法和随钻测试的地层风化程度研究

基于无监督t-SNE算法和随钻测试的地层风化程度研究

扫码查看
本文提出了一种基于无监督学习和随钻测试技术对地层风化程度进行预测的方法。随钻测试技术提供了一种对地层进行实时评估的手段,且能够反映地层的连续变化。这些多维度的钻进参数蕴含着丰富的地层信息,t-SNE 算法能够发现数据的隐藏模式和结构,适用于探索性数据分析。通过随钻测试系统,实时监测钻机运动和运行参数。对随钻测试数据进行处理后,筛选出纯钻进过程的数据,随后对这些数据进行分割和标准化处理,最后导入 t-SNE 算法中,计算出高维空间中数据点的相似性,并将其映射到低维空间。研究结果表明,t-SNE 算法能够有效地通过钻进参数识别地层风化程度,与实际情况相吻合。这一方法为工程识别岩层风化程度提供了一种智能化的新方法和新思路。
Study on formation weathering degree based on unsupervised learning t-SNE and logging while drilling technique
A method to predict the degree of formation weathering based on unsupervised learning and measurement while drilling(MWD)technique is introduced in this paper.MWD technique provides a means for real-time assessment of the formations and could reflect the continuous changes in the strata.These multidimensional drilling parameters contain rich information about the formation,and the t-distributed stochastic neighbor embedding(t-SNE)algorithm is capable of uncovering hidden patterns and structures within the data,making it suitable for exploratory data analysis.Through the MWD system,the movement and operating parameters of the drilling rig are monitored in real-time.After processing the MWD data,the data from the pure drilling process are selected,followed by segmentation and normalization of these data.Finally,the data are imported into the t-SNE algorithm to calculate the similarity of data points in high-dimensional space and map them to a lower-dimensional space.The study results indicate that the t-SNE algorithm can effectively identify the degree of formation weathering through drilling parameters,which coincide with actual conditions.This method provides a new intelligent approach and perspective for engineering identification of rock formation weathering degrees.

measurement while drilling(MWD)unsupervised learningt-SNE

赵卫冬、王怀庆、张晓杰、王腾

展开 >

云南交投集团云岭建设有限公司,昆明 650041

云南省交通投资建设集团有限公司,昆明 650103

中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071

随钻测试 无监督学习 t-SNE算法

2025

工程勘察
中国建筑学会工程勘察分会 建设部综合勘察研究设计院

工程勘察

影响因子:0.693
ISSN:1000-1433
年,卷(期):2025.53(1)