首页|基于改进蚁群算法的地图路径规划方法

基于改进蚁群算法的地图路径规划方法

扫码查看
随着科技水平的发展和社会的持续进步,如何提升路径规划算法的收敛效果和精度逐渐成为当下的研究热点.现有蚁群算法在规划路径时,经常遇到局部难以得到最优解的问题.因此,通过启发式信息素更新策略来提高蚁群算法的搜索能力,并通过自适应调整参数的方法得到最优参数,形成改进的蚁群算法.将优化后的算法应用于Oliver30、Att48、Eil51公开数据集,并将实验结果与现有路径规划算法进行对比,结果证明:本文算法能够用相对较少的迭代次数规划出最优路径,说明优化算法得到最优解的速度快,具有较好的最优路径搜索能力.
Map Path Planning Method Based on Improved Ant Colony Algorithm and Its Application
With the development of science and technology and the continuous progress of society,how to improve the convergence effect and accuracy of path planning algorithm has gradually become a research hotspot.When the existing ant colony algorithm is planning the path,it often encounters the problem that it is difficult to get the optimal solution locally.Therefore,in this paper,the heuristic pheromone updating strategy is used to improve the search ability of ant colony algorithm,and the optimal parameters are obtained by adaptive parameter adjustment method to form an improved ant colony algorithm.The optimized algorithm is applied to the Oliver30,Att48 and Eil51 open data sets,and the experimental results are compared with the existing path planning algorithms.The results show that the proposed algorithm can plan the optimal path with relatively little iteration,indicating that the optimization algorithm can get the optimal solution quickly and has a good ability to search the optimal path.

ant colony algorithmdynamic updating mechanism of pheromonemap path planningalgorithm optimization

李卫卫、刘晓丹、辛露洋、闫思贤、梁嘉铭

展开 >

郑州财经学院信息工程学院,河南 郑州 450000

中国电信河南分公司云网运营部,河南 郑州 450003

蚁群算法 信息素动态更新机制 地图路径规划 算法优化

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(3)
  • 6