首页|基于注意力机制的农作物早期病虫害自动识别研究

基于注意力机制的农作物早期病虫害自动识别研究

扫码查看
针对农作物早期病虫害自动识别效果欠佳的问题,改进了ShuffleNetV2网络,通过在网络的不同位置引入自适应注意力机制,并用Hardswish激活函数替换原网络中的Relu激活函数,设计了ShuffleNetV2-AECA网络来解决农作物早期病虫害自动识别问题.实验表明,在保持模型性能的基础上,Hardswish激活函数可以有效降低模型的参数量,同时自适应注意力机制的引入提升了网络对早期病虫害的识别效果,对生产实践产生更加积极的影响.
A Research on Automatic Identification of Early Crop Diseases and Pests Based on Attention Mechanism
In response to the problem of poor automatic recognition of early crop diseases and pests,the ShuffleNetV2 network is improved by introducing adaptive attention mechanisms at different positions in the network,and replacing the Relu activation func-tion in the original network with a Hardswish activation function.The ShuffleNetV2 ACECA network is designed to solve the prob-lem of automatic recognition of early crop diseases and pests.Experiments show that while maintaining the performance of the model,the Hardswish activation function can effectively reduce the number of parameters in the model.At the same time,the intro-duction of adaptive attention mechanism improves the recognition effect of the network on early pests and diseases,which has a more positive impact on production practice.

attention mechanismidentification of early crop diseases and pestsShuffleNetV2 network

郝艳艳

展开 >

河南工业贸易职业学院信息工程学院,河南 郑州 450000

注意力机制 早期病虫害识别 ShuffleNetV2网络

河南省科技攻关计划(2024)河南省高等学校重点项目(2023)河南工业贸易职业学院校级科研团队大数据创新与应用科研团队项目(2021)

24210211107623A52006101

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(4)
  • 5