首页|基于卷积神经网络的儿童自闭症面部特征分类

基于卷积神经网络的儿童自闭症面部特征分类

扫码查看
儿童自闭症是一种难以早期发觉的疾病,这种症状不及时采取治疗措施将会影响一生,因此尽早发现、尽早治疗有着重要意义.儿童自闭症的传统诊断方法通常是通过观察法,这种方法耗费人力物力,容易错过最佳治疗时期.对此,提出了一种基于卷积神经网络的儿童自闭症分类模型,该模型以经过伽马变换、边界增强等图像处理操作后的特征增强数据作为输入,实现了通过儿童面部特征分类自闭症患者.实验结果表明,该模型具有良好的分类性能.
Facial Feature Classification for Children with Autism Based on Convolutional Neural Networks
Autism in children is a difficult disease to detect early.If this symptom is not treated in time,it will affect the whole life.Therefore,early detection and treatment are of great significance.The traditional diagnosis method of autism in children is usually through observation,which is labor-intensive and prone to miss the best treatment period.This paper proposes a Convolutional Neu-ral Network-based classification model for autism in children.The model takes the feature-enhanced data after image processing op-erations such as Gamma transformation and boundary enhancement as input,and achieves the classification of autism patients through the facial features of children.The experimental results show that the model has good classification performance.

Autism in childrenConvolutional Neural Networkimage processing

周锐、刘海军、邢丽莉、崔春杰、王高远

展开 >

防灾科技学院,河北 廊坊 065201

北京经纬纺机新技术有限公司 北京市轻纺机械机器视觉工程技术研究中心,北京 100000

辽宁公安司法管理干部学院,辽宁 沈阳 110161

儿童自闭症 卷积神经网络 图像处理

廊坊市科技局科学研究与发展计划项目廊坊市科学技术研究与发展计划自筹经费项目

20230110542023011064

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(5)