首页|结合注意力特征融合的八度卷积表情识别方法

结合注意力特征融合的八度卷积表情识别方法

扫码查看
针对目前面部表情识别特征表达不足、识别精度低及参数多的问题,提出了一种结合注意力特征融合的八度卷积表情识别方法.主要创新点在于将注意力特征融合机制引入模型,优化不同尺度特征的融合;采用深度可分离网络替代传统卷积,大幅减少参数;并引入BN和PReLU提升模型稳定性和性能.实验显示,该模型在CK+和Fer2013数据集上准确率分别达98.91%和74.03%,展现了优秀的泛化能力和准确度.
Expression Recognition Method Combined with Attention Feature Fusion
Aiming at the problems of insufficient expression of facial expression features,low recognition accuracy and many pa-rameters,an octave convolutional expression recognition method combined with attention feature fusion is proposed.The main inno-vation point is to introduce the attention feature fusion mechanism into the model to optimize the fusion of different scale features.Deep separable network is used to replace traditional convolution,which greatly reduces parameters.BN and PReLU are introduced to improve the stability and performance of the model.Experiments show that the accuracy of the model on CK+and Fer2013 data sets is 98.91%and 74.03%,respectively,showing excellent generalization ability and accuracy.

facial expression recognitionconvolutional neural networkattention feature fusion mechanism

任豪

展开 >

贵州师范大学 物理与电子科学学院,贵州 贵阳 550025

人脸表情识别 卷积神经网络 注意力特征融合机制

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(5)