首页|基于多尺度卷积神经网络的DDoS攻击检测方法

基于多尺度卷积神经网络的DDoS攻击检测方法

扫码查看
近年来,网络安全面临着日益严峻的挑战,其中分布式拒绝服务(DDoS)攻击是网络威胁中的一种常见形式.为了应对这一挑战,提出了一种基于多尺度卷积神经网络(MSCNN)的DDoS攻击检测方法.在CICDDoS2019day 1数据集训练模型,CICDDoS2019day2数据集测试模型检测性能.通过利用MSCNN对网络流量进行预测和分类,能够有效识别DDoS攻击并减少误报率.实验表明,MSCNN方法在准确性、召回率、F1得分性能指标上优于SVM、DNN、CNN、LSTM 和 GRU.
DDoS Attack Detection Method Based on Multi-scale Convolutional Neural Network
In recent years,network security is facing increasing challenges,among which Distributed Denial of Service(DDoS)attack is a common form of network threats.In order to deal with this challenge,this paper proposes a DDoS attack detection method based on Multi-scale Convolutional Neural Network(MSCNN).The model is trained on the CICDDoS2019day1 dataset,and the model detection performance is tested on the CICDDoS2019day2 dataset.By using MSCNN to predict and classify network traffic,DDoS attacks can be effectively identified and false positive rate can be reduced.Experiments show that the MSCNN method is superior to DNN,CNN and LSTM in terms of accuracy,recall and F1 score performance metrics.

DDoS attackmulti-scale convolutional neural networknetwork securitydeep learning

李春辉、王小英、张庆洁、刘翰卓、梁嘉烨、高宁康

展开 >

防灾科技学院,河北廊坊 065201

中国冶金地质总局矿产资源信息中心,北京 100025

DDoS攻击 多尺度卷积神经网络 网络安全 深度学习

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(6)