首页|基于ECG和PPG特征的情绪识别研究

基于ECG和PPG特征的情绪识别研究

扫码查看
心理健康是我们身体健康的重要组成部分,也是我们拥有幸福生活的基础.现代社会的高压力和快节奏生活使人们越来越容易感到焦虑、抑郁和情绪不稳定,通过合理的健康情绪检测方法有益于帮助医护对患者进行情绪监督调理.基于现有的心电图(ECG)和脉搏波(PPG)两种穿戴式监测情绪的方法,使用WESAD数据集,分别验证了心电信号的心率和心率特异性对中性、压力、愉悦和冥想四种情绪状态的重要性,并基于Sklearn库的分类器,使用交叉验证方法评估和比较它们的性能.实验结果显示,ExtraTrees分类模型在情感状态分类中表现最佳,ECG在分类器中具有更优秀的表现.
Research on Emotion Recognition Based on ECG and PPG Features
Mental health is an important part of our physical health and the foundation for us to have a happy life.The high pressure and fast-paced life in modern society make people increasingly prone to anxiety,depression and emotional instability.Reasonable and healthy emotion detection methods are beneficial to help medical staff supervise and regulate the emotions of patients.Based on the existing two wearable methods of electrocardiogram(ECG)and pulse wave(PPG)for monitoring emotions,this paper uses the WESAD dataset to separately verify the importance of heart rate and heart rate specificity of electrocardiogram signals for four emo-tional states:neutrality,stress,pleasure and meditation.Based on the classifier of Sklearn library,the cross-validation method is used to evaluate and compare their performances.The experimental results show that the ExtraTrees classification model performs best in the classification of emotional states,and ECG has a better performance in the classifier.

heart rate detectionPPGECGheart rate variabilityemotion recognition

黄欣琪、彭奕文、黄远周、姚伟为、和盛华、单全莹、项修家

展开 >

广州城市理工学院机器人工程学院,广东 广州 510850

心率检测 PPG ECG 心率变异性 情绪识别

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(8)