首页|基于混合协同过滤的旅游兴趣点推荐算法

基于混合协同过滤的旅游兴趣点推荐算法

扫码查看
针对现有的旅游兴趣点(POI)推荐方法未能充分发掘用户的潜在兴趣和推荐准确度不高问题,提出一种基于混合协同过滤、社交特征信息和Logistic矩阵分解的旅游兴趣点推荐算法H-S-LMF.该算法首先通过混合协同过滤算法来获取用户偏好,然后根据用户间共同签到行为的相似性和用户之间的友谊因素来衡量社交特征对旅游兴趣点推荐的影响,最后将用户偏好和社交特征融合到Logistic矩阵分解中以提高推荐的准确性.实验结果表明,与最优的基线模型相比,H-S-LMF在Yelp和Gowalla数据集上的精确率(Precision@10)分别提高了69.53%和63.23%,召回率(Recall@10)分别提高了73.61%和59.05%.
Tourism Interest Point Recommendation Algorithm Based on Hybrid Collaborative Filtering
A tourism point of interest(POI)recommendation algorithm H-S-LMF based on hybrid collaborative filtering,social fea-ture information,and logistic matrix decomposition is proposed to address the problems of insufficient exploration of users'potential interests and low recommendation accuracy in existing POI recommendation methods.The algorithm firstly obtains user preferences through a hybrid collaborative filtering algorithm,then measures the influence of social features on tourism interest point recommen-dations based on the similarity of common check-in behaviors among users and friendship factors between users,and finally inte-grates user preferences and social features into logistic matrix decomposition to improve the accuracy of recommendations.The ex-perimental results show that compared with the optimal baseline model,H-S-LMF achieves higher accuracy on Yelp and Gowalla da-tasets.The precision rate of H-S-LMF(Precision@10)increased by 69.53%and 63.23%respectively,and the recall rate(Recall@10)increased by 73.61%and 59.05%respectively.

recommended tourist interest pointsmixed recommendationlogistic matrix decompositionsocial characteristics

王倩、魏嘉银

展开 >

贵州民族大学 数据科学与信息工程学院,贵州 贵阳 550025

旅游兴趣点推荐 混合推荐 Logistic矩阵分解 社交特征

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(8)