首页|基于改进SALS算法的高维大数据挖掘效率优化方法研究

基于改进SALS算法的高维大数据挖掘效率优化方法研究

扫码查看
针对传统方法在高维大数据挖掘效率优化中应用存在任务成功数量较少、作业执行时间较长等问题,效率优化效果并不理想,为此提出基于改进SALS算法的高维大数据挖掘效率优化方法.构建高维大数据挖掘模型,描述高维大数据挖掘状态,采用局部平滑处理算法确定高维大数据挖掘进度,判定高维大数据挖掘效率是否低效,对于低效状态下采用改进SALS算法对任务队列优化、调度空闲节点,并且动态调度任务,实现效率优化.经实验证明,设计方法应用下数据挖掘任务成功数量得到了有效提升,作业执行时间实现有效缩短,具有良好的效率优化效果.
Research on Efficiency Optimization Method for High Dimensional Big Data Mining Based on Improved SALS Algorithm
In response to the problems of low number of successful tasks and long execution time in the application of traditional methods for efficiency optimization in high-dimensional big data mining,the efficiency optimization effect is not ideal.Therefore,a research on high-dimensional big data mining efficiency optimization method based on improved SALS algorithm is proposed.This paper builds a high-dimensional big data mining model,describes the state of high-dimensional big data mining,uses local smooth-ing processing algorithm to determine the progress of high-dimensional big data mining,judges whether the efficiency of high-dimensional big data mining is low,and uses the improved SALS algorithm to optimize the task queue,schedule idle nodes,and dy-namically schedule tasks under low efficiency conditions to achieve efficiency optimization.Experimental results have shown that the application of design methods has effectively increased the number of successful data mining tasks,has shortened the execution time of tasks,and has achieved good efficiency optimization effects.

improving SALS algorithmhigh dimensional big dataexcavateefficiency optimizationlocal smoothing processing algorithm

党浩予

展开 >

西安明德理工学院,陕西 西安 710124

改进SALS算法 高维大数据 挖掘 效率优化 局部平滑处理算法

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(9)