首页|基于改进EAST和CRNN模型的栅格地质图像文本识别

基于改进EAST和CRNN模型的栅格地质图像文本识别

扫码查看
现有大量栅格地质图像中包含丰富的地理与地质信息,高效提取图像中的文本有助于数据挖掘及图像的检索和管理.提出了一种基于改进EAST和改进CRNN模型的文本定位与识别方法.首先,在EAST模型中引入质量焦点损失方法,提升对样本难度、分类误差和回归误差一致性的关注,并根据比例尺进行图像分割.其次,在CRNN模型中改用更加轻量高效的MobileNetv3作为骨干网络,并结合不同大小特征图的融合技术.实验结果显示,提出的改进方法有效提升了模型效果,在栅格地质图像文本定位和识别任务中,该模型的F1-Score分别达到了0.860和0.808.
Text Recognition of Raster Geological Images Based on Improved EAST and CRNN Models
A large number of raster geological images contain rich geographical and geological information.Efficient extraction of text from these images aids in data mining,as well as image retrieval and management.This paper proposes a text localization and recognition method based on improved EAST and CRNN models.Firstly,a quality focal loss method is introduced in the EAST model to enhance the focus on sample difficulty,classification errors,and the consistency of regression errors,and image segmenta-tion is performed according to the scale.Secondly,the CRNN model adopts the more lightweight and efficient MobileNetv3 as the backbone network,combined with a feature map fusion technique of different sizes.Experimental results show that the proposed im-provements effectively enhance the model's performance,achieving F1-Scores of 0.860 and 0.808 in text localization and recogni-tion tasks for raster geological images,respectively.

raster geological imagestext recognitionMobileNetfeature fusionEASTCRNN

郭文恒、韩定良、刘大伟、张宏宇、王茂发

展开 >

防灾科技学院,河北 廊坊 065201

桂林电子科技大学,广西壮族自治区 桂林 541004

烟台市融媒体中心,山东 烟台 264000

栅格地质图像 文字识别 MobileNet 特征融合 EAST CRNN

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(9)