首页|基于加权集成学习的新能源汽车月销量预测方法

基于加权集成学习的新能源汽车月销量预测方法

扫码查看
汽车销量的准确预测对于车企的产业布局、消费者的选型购买具有一定参考意义.首先在爬取典型新能源汽车配置数据、测评数据和近五年的销售数据基础上,通过数据清洗和特征工程方法构建了包含有127家车企、1 440个车型的训练数据集.然后,采用加权策略融合SVR算法和LightGBM算法,设计新能源汽车销量预测模型,进而实现对各个车企的新能源汽车每月销量的准确预测.本文提出的销量预测模型在每个车企下月总销量上的平均R2值达到了0.92,实验结果表明本文提出的方法能够较好地预测新能源汽车的销量,可为车企和消费者提供参考信息.
A Method for Predicting Monthly Sales of New Energy Vehicles Based on Weighted Ensemble Learning
The accurate prediction of car sales and analysis of influencing factors have a certain reference significance for the indus-trial layout of automotive enterprises and the purchase of consumers.This article crawls typical new energy vehicle configuration data,evaluation data,and sales data from the past five years,and constructs a training dataset containing 127 car companies and 1 440 car models based on data cleaning and feature engineering methods.Then,an ensemble prediction model for new energy vehicle sales,combining SVR algorithm and LightGBM algorithm using an weighting strategy,is designed to accurately predict the monthly sales of new energy vehicles for each car company.The sales prediction model achieves an average R2 value of 0.92 on the total monthly sales for each car company.Experimental results demonstrate that the method proposed in this article can effectively predict the sales of new energy vehicles,providing reference information for automotive enterprises and consumers.

vehicle salesensemble learningSVRLightGBM

邓翔

展开 >

电科院,北京 100041

汽车销量 集成学习 SVR LightGBM

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(9)