首页|基于改进YOLOv10的水稻病害检测算法

基于改进YOLOv10的水稻病害检测算法

扫码查看
针对水稻图像中复杂背景带来的病斑难以识别、检测速度慢等问题,提出一种基于改进YOLOv10的目标检测算法,用于水稻病害的自动识别.首先对YOLOv10的骨干网络进行了改进,引入大可分离核注意力(LSKA)替换了原有的极化注意力机制(PSA),提高了对特征的敏感度,增强了网络的泛化能力和效率.此外,将损失函数替换为Normalized Wasser-stein Distance(NWD)损失函数,在降低特征图的同时尽可能保留更多的信息,提高处理效率.在水稻数据集上进行实验,实验结果表明,改进后的YOLOv10算法在mAP50这一指标上达到了97.95%,与原始的YOLOv10相比,提高了1.08%;在mAP50-95这一指标上达到了78.74%,与原始的YOLOv10相比,提高了1.52%.
Rice Disease Detection Algorithm Based on Improved YOLOv10
Aiming at the problems of difficult disease spot recognition and slow detection speed caused by complex backgrounds in rice images,this paper proposes an improved YOLOv10 target detection algorithm for automatic identification of rice diseases.Firstly,the backbone network of YOLOv10 is improved by introducing Large Separable Kernel Attention(LSKA)to replace the original Polarized Self-Attention(PSA),which improves the sensitivity to features,enhances the generalization ability and efficiency of the network.In addition,the loss function is replaced by the Normalized Wasserstein Distance(NWD)loss function,which re-duces the feature map while preserving more information as much as possible,improving the processing efficiency.Experiments con-ducted on the rice dataset show that the improved YOLOv10 algorithm achieves 97.95%on the mAP50 indicator,representing a 1.08%increase compared to the original YOLOv10;and it achieves 78.74%on the mAP50-95 indicator,representing a 1.52%in-crease compared to the original YOLOv10.

rice disease detectionYOLOv10attention mechanismloss function

赵明瞻、苏子芸、杜晓毅

展开 >

河北建筑工程学院信息工程学院,河北 张家口 075000

水稻病害检测 YOLOv10 注意力机制 损失函数

2024

电脑与电信
广东省对外科技交流中心

电脑与电信

影响因子:0.117
ISSN:1008-6609
年,卷(期):2024.(10)