首页|拱形空腹连续梁桥结构多尺度分析研究

拱形空腹连续梁桥结构多尺度分析研究

扫码查看
拱形空腹连续梁桥,作为拱桥和连续梁桥组合而成的一种新型桥型,结合了梁桥与拱桥的特点,结构造型美观,线形优美,与周边景观及场地适应性较好,在现代城市景观桥梁中具有较大的应用空间.拱形连续梁桥主墩V形段结构复杂,尤其梁拱结合三角区横梁的构造形式和受力特征复杂,基于杆系有限元的结构整体分析难以准确计算其应力分布,往往还需要进行更细致的实体有限元分析.本文先用杆系有限元法对桥梁结构进行整体分析,再用实体有限元法对梁拱结合三角区横梁进行局部分析,通过采用整体和局部结合的多尺度分析方法,对拱形空腹连续梁桥结构进行详细检算,为拱形连续梁桥设计优化提供依据,对该类型的桥梁结构设计具有一定的借鉴意义.
Multiscale Analysis of Arch Hollow Continuous Beam Bridge Structure
Arch shaped hollow continuous beam bridge,as a new type of bridge formed by combining arch bridge and continuous beam bridge,integrates the characteristics of beam bridge and arch bridge.It has a beautiful structural shape,and good adaptability to surrounding landscapes and sites.It has a large application space in modern urban landscape bridges.The V-shaped section structure of the main pier of an arched continuous beam bridge is complex,especially the structural form and stress characteristics of the beam arch combined with the triangular crossbeam.It is difficult to accurately calculate the stress distribution based on the overall analysis of the beam system finite element structure,and more detailed solid finite element analysis is often required.This article first conducts an overall analysis of the bridge structure using the rod finite element method,and then conducts a local analysis of the beam arch combined with the triangular beam using the solid finite element method.By using a multi-scale analysis method that combines the whole and the local,a detailed calculation of the arch hollow continuous beam bridge structure is carried out,providing a basis for the design optimization of the arch continuous beam bridge,and has certain reference significance for the design of this type of bridge structure.

arch shapecontinuous beamcross beamthree way prestressfinite element analysis

李军心、胡国华、王建煌

展开 >

福建铭泰集团有限公司,福建厦门 361000

厦门万路通设计院有限公司,福建厦门 361000

福建省恒基建设股份有限公司,福建厦门 361000

拱形 连续梁 横梁 三向预应力 有限元

福建省住房和城乡建设行业科学技术计划

2022-K-132

2024

广东交通职业技术学院学报
广东交通职业技术学院

广东交通职业技术学院学报

影响因子:0.315
ISSN:1671-8496
年,卷(期):2024.23(2)
  • 11