首页|基于神经网络和D-S证据理论的高速列车轴箱轴承故障诊断方法

基于神经网络和D-S证据理论的高速列车轴箱轴承故障诊断方法

扫码查看
针对传感器采集的单一信号在轴承故障诊断精度偏低的问题,提出了基于神经网络和D-S证据理论的故障诊断方法。首先针对高速列车轴向轴承非平稳振动信号,采用小波包进行3 层分解,提出各频段重构系数幅值的平方和作为能量特征参数,构建故障特征向量;然后利用BP神经网络识别轴承的故障特征,进而根据D-S证据理论融合规则对BP神经网络的识别结果进行最终识别。实验仿真结果表明,与单一传感器的故障诊断方法相比,本文所提方法的故障诊断率提高了2。5%,达到了97。5%。
High-speed Train Axle Box Bearing Fault Diagnosis Method Based on Neural Network and D-S Evidence Theory
In view of the low accuracy of bearing fault diagnosis using a single signal collected by a sensor,a fault diagnosis method based on neural networks and D-S evidence theory is proposed.Firstly,for the non-stationary vibration signal of the high-speed train axial bearing,the wavelet packet is used for 3-level decomposition,and the sum of the square of the reconstructed coefficient amplitude in each frequency band is proposed as the energy feature parameter to construct the fault feature vector.Then,the BP neural network is used to identify the fault features of the bearing,and the recognition result of the BP neural network is finally identified according to the fusion rule of D-S evidence theory.The experimental simulation results show that the fault diagnosis rate of the proposed method reaches 97.5%,which is 2.5%higher than that of the single sensor fault diagnosis method.

axle box bearingwavelet packet decompositionBP neural networkD-S evidence theory

宁善平、赵晨、武文星、黄院芳

展开 >

广东交通职业技术学院,广东广州 510650

轴箱轴承 小波包分解 BP神经网络 D-S证据理论

广东省教育厅青年创新人才项目广东省教育厅青年创新人才项目

2022KQNCX1912021KQNCX177

2024

广东交通职业技术学院学报
广东交通职业技术学院

广东交通职业技术学院学报

影响因子:0.315
ISSN:1671-8496
年,卷(期):2024.23(4)