首页|基于FAHP方法的智能建造微专业课程设置研究

基于FAHP方法的智能建造微专业课程设置研究

扫码查看
将智能建造人才培养需求和微专业建设优势有机结合,基于模糊层次分析法(FAHP)提出了智能建造微专业课程设置的模型方法.首先,分析智能建造微专业培养目标与毕业要求,建立智能建造微专业课程库;进而根据对应学校的培养目标和专业基础,运用FAHP计算拟设课程与学校培养目标和专业基础的耦合匹配度,从中优选出匹配度较高的课程,确定学校智能建造微专业的课程群.对武汉理工大学智能建造微专业课程设置进行实证分析,计算结果表明:该方法能有效优选出与学校办学优势适配的工程物联网与智慧工地、工程智能监测与运维等课程,有利于增强微专业课程设置的科学性,实现特色培养目标.
Research on the course setting of intelligent construction micro major based on FAHP
Based on the fuzzy analytic hierarchy process(FAHP)method,a model method for the curriculum setting of intelligent construction micro specialty is proposed by combining the training needs of intelligent construction talents with the advantages of micro specialty construction.Firstly,the training objectives and graduation requirements of intelligent construction micro specialty are analyzed,and based on this,the course library of intelligent construction micro specialty is established.Then,according to the training objectives and professional foundations of different schools,FAHP is used to calculate the coupling matching degree between the proposed course and the school training mode,and the courses with higher matching degree are selected to determine the courses of intelligent construction micro specialty.An empirical analysis is carried out on the curriculum setting of intelligent construction micro specialty in Wuhan University of Technology.The results show that through the application of this method,courses such as engineering internet of things and intelligent construction site and engineering intelligent monitoring and operation and maintenance can be effectively selected to adapt to the advantages of school running,which is conducive to enhancing the scientificity of micro specialty curriculum setting and realizing characteristic training objectives.

intelligent construction micro majorFAHPcourse settingempirical analysis

陈伟、饶俊芳、刘雯洁、田仪帅、蔡礼雄

展开 >

武汉理工大学 土木工程与建筑学院,湖北 武汉 430070

智能建造微专业 FAHP方法 课程设置 实证分析

2024

高等建筑教育
重庆大学 中国建设教育协会普通高等教育专业委员会

高等建筑教育

影响因子:0.84
ISSN:1005-2909
年,卷(期):2024.33(3)
  • 11