首页|基于机器学习算法的密集城区超大直径盾构切桩诱发建筑物振动响应预测模型研究

基于机器学习算法的密集城区超大直径盾构切桩诱发建筑物振动响应预测模型研究

扫码查看
对盾构切桩诱发建筑物振动响应的精确预测有利于减小盾构切桩施工对建筑物的影响,指导工程的顺利进行。为实现对盾构切桩诱发建筑物振动响应的合理预测,依托广州市海珠湾盾构隧道切桩工程,建立基于卷积神经网络(CNN)、长短期记忆神经网络(LSTM)、反向传播神经网络(BP)与混合神经网络(CNN-LSTM)的4种神经网络模型,对建筑物的振动进行预测并对比各模型的准确性,分析影响预测精度的因素。结果表明:CNN-LSTM神经网络的预测性能最佳,CNN、LSTM与BP神经网络的预测精度相近。经过对比发现,使用贝叶斯优化算法对超参数进行调节可有效提高预测精度。盾构切桩工法的选用以及现场施工的复杂环境影响了建筑物的振动响应,导致了模型预测精度的下降,未来可进行室内缩尺实验并对环境因素进行量化以提高预测精度。研究结果可为盾构切桩工程提供参考。
Study on the Prediction Model of Building Vibration Response Induced by Super-large Diameter Shield Cutting Pile in Densely Urban Areas based on Machine Learning Algorithm
Accurate prediction of the vibration response of buildings induced by shield tunneling cutting piles can help reduce the impact of shield tunneling cutting piles on buildings and guide the safety progress of the project.In order to achieve reasonable prediction of the vi-bration response of buildings induced by shield tunneling cutting piles,based on the shield tunneling project in Haizhu Bay,Guangzhou,four neural network models based on convolutional neural network(CNN),long short-term memory neural network(LSTM),backpropaga-tion neural network(BP),and hybrid neural network(CNN-LSTM)were established to predict the vibration of buildings and compare the accuracy of each model.The factors affecting the prediction accuracy were analyzed.The results showed that the CNN-LSTM neural network had the best prediction performance,while the prediction accuracy of CNN,LSTM,and BP neural networks was similar.After comparison,it was found that using Bayesian optimization algorithm to adjust hyperparameters can effectively improve prediction accuracy.The selection of shield tunneling cutting piles method and the complex environment of on-site construction affect the vibration response of buildings,result-ing in a decrease in model prediction accuracy.In the future,indoor scale experiments can be conducted and environmental factors can be quantified to improve prediction accuracy.The research results can provide a reference for shield tunneling engineering.

shield tunnelsuper-large diametercutting pilesdeep learningvibration

曾庆成、黄书华、沈翔、彭徐姝、苏林建、蒋建睿

展开 >

广州海珠湾建设有限公司 广州 510240

中铁十四局集团大盾构工程有限公司 南京 211800

滨海城市韧性基础设施教育部重点实验室,深圳大学 深圳 518060

盾构隧道 超大直径 切桩 深度学习 振动

2025

广东土木与建筑
广东省建筑科学研究院 广东省土木建筑学会

广东土木与建筑

影响因子:0.124
ISSN:1671-4563
年,卷(期):2025.32(1)