首页|基于机器学习的CH4燃烧动力学机理优化

基于机器学习的CH4燃烧动力学机理优化

扫码查看
基于径向基函数插值算法构建的机器学习模型,以点火延迟时间(T=1084~2175 K,p=7.3×104~2.4×106 Pa,φ=0.2~2.0)和层流火焰速度(T=293~600 K,p=5.1×104~1.1×106 Pa,φ=0.4~2.0)实验数据为优化目标,对CH4燃烧机理的指前因子和活化能进行优化,获得了可在宽工况范围内使用的CH4燃烧机理.与初始的CH4机理(Ori-CH4)相比,优化后的CH4机理(Opt-CH4)在点火延迟时间上的预测平均误差下降了 57.46%,在层流火焰速度上的预测平均误差下降了 21.55%.使用Opt-CH4机理对点火延迟时间、层流火焰速度和射流搅拌反应器中的组分浓度变化趋势进行了预测,Opt-CH4机理均表现出优越的预测准确度.在T=1491.5 K,p=1.0×105 Pa,4.988%CH4\19.953%O2\75.059%N2(体积分数)工况下,CH3+O2⇌CH2O+OH 和 CH2O+O2⇌HCO+HO2在各个机理中的敏感性差异是优化前后CH4机理预测准确度不同的主要原因.因此,机器学习方法在燃料燃烧反应动力学机理参数优化上具有广阔的应用前景.
Optimization of Kinetic Mechanism for Methane Combustion Based on Machine Learning
In this work,the experimental data of ignition delay time(T=1084-2175 K,p=7.3×104-2.4×106 Pa,φ=0.2-2.0)and laminar flame speed(T=293-600 K,p=5.1x104-1.1×106 Pa,φ=0.4-2.0)were taken as the optimization objectives based on the machine-learning model constructed by radial basis function interpolation method,and pre-exponential factors and activation energies of CH4 combustion mechanism were optimized,and a CH4 combustion mechanism that can be used in a wide range of working conditions was obtained.Compared with the Ori-CH4 mechanism,the mean error of the Opt-CH4 mechanism is reduced by 57.46%in the ignition delay times and 21.55%in the laminar flame speeds.The Opt-CH4 mechanism was used to predict the ignition delay times,laminar flame speeds and the variation tendency of species concentration in jet stirred reactor.The Opt-CH4 mechanism showed superior prediction accuracy.Under the conditions of T=1491.5 K,p=1.0×105 Pa,4.988%CH4\19.953%O2\75.059%N2(volume fraction),the difference of sensitivity of CH3+O2⇌C H2O+O H and CH2O+O2⇌H1CO+HO2 in each mechanism is the main reason for the difference of prediction accuracy of CH4 mechanism before and after optimization.Therefore,the machine learning method has a broad application prospect in the optimization of fuel combustion reaction kinetics mechanism parameters.

Methane combustionMachine learningChemical kineticsMechanism optimization

曹双双、黄济勇、李伟、张厚君、李象远、韩优

展开 >

天津大学化工学院,天津 300072

航天化学能源全国重点实验室,湖北航天化学技术研究所,襄阳 441003

四川大学化学工程学院,成都 610065

甲烷燃烧 机器学习 化学动力学 机理优化

航天化学能源全国重点实验室开放基金国家自然科学基金国家自然科学基金

STACPL220221B03T2441001U20A20151

2024

高等学校化学学报
中华人民共和国教育部委托 吉林大学和南开大学

高等学校化学学报

CSTPCD北大核心
影响因子:1.067
ISSN:0251-0790
年,卷(期):2024.45(10)