Abstract
Maximizing the sustainable recycling of spent lithium-ion batteries(LIBs)shows economic and environmental significance.This study recovered lithium cobaltate(LiCoO2,LCO)from spent LIBs cathode powder.The recovered LCO was then combined with NaHSO3 to remove refractory organic pollutants of carbamazepine(CBZ)in water.The degradation of CBZ reached 80.0%within 60 min,by 1O2,S04-·,·OH and 02-·generated in the LCO/NaHSO3 reaction.The electron transfer between Co(Ⅲ)and Co(Ⅱ)was beneficial to the generation of free radicals.The LCO/NaHSO3 degraded CBZ effectively in both secondary outlet water and tap water.However,high concentrations of inorganic ions(Cl-,HCO3-,HPO42-,SO42-,NO3-)and natural organic matter(humic acid,HA)could inhibit the degradation of CBZ.After three cycles,the stability of the LCO/NaHSO3 system was demonstrated by the maintained high efficiency in the degradation of CBZ.The obtained data indicate that the LCO/NaHSO3 system holds great application potential in the field of advanced oxidation degradation of pollutants.
基金项目
National Natural Science Foundation of China(42067057)
National Natural Science Foundation of China(42367060)
Science and Technology Plan Project of Yunnan Provincial Science and Technology Department,China(202101AT070087)
Highlevel Scientific Research Foundation for Talent Introduction of Kunming University of Science and Technology,China(10978172)