首页|基于肺部超声及临床分子特征列线图预测儿童难治性肺炎支原体肺炎

基于肺部超声及临床分子特征列线图预测儿童难治性肺炎支原体肺炎

扫码查看
目的 由于缺乏实用的诊断成像工具,难治性肺炎支原体肺炎(RMPP)的早期诊断具有挑战性,肺部超声(LUS)是一种诊断儿童肺炎的新兴工具,因此,我们评估了联合LUS、临床特征和实验室指标的列线图(nomogram)在儿童RMPP早期预测中的作用.方法 前瞻性纳入住院的300例肺炎支原体肺炎儿童,按2∶1的比例200例入组建模组,其中普通型肺炎支原体肺炎(CMPP)159例,RMPP 41例,100例入组验证组,其中CMPP 81例,RMPP 19例.采用二元logistic回归分析评估影响RMPP发生的因素.将单因素分析中有显著意义的自变量纳入多因素logistic回归分析,筛选预测RMPP事件的独立危险因素,建立预测模型.在R软件中将预测模型转换为可视化诺莫图(nomogram).采用受试者工作特征(ROC)曲线评价nomogram模型的准确性,并通过标定曲线对nomogram模型进行验证.采用ROC曲线和标定曲线评价nomogram在RMPP早期诊断中的作用.结果 年龄[OR=1.286(95%CI:1.031~1.639),P=0.031],入院前发热时间[OR=1.630(95%CI:1.248~2.219),P<0.001]、高热[OR=3.650(95%CI:0.889~18.230),P=0.089]、血沉[OR=1.056(95%CI:1.027~1.090),P<0.001]和支气管充气征[OR=104.526(95%CI:16.433~1319.111),P<0.001]是RMPP发生的独立危险因素.预测模型直观的表示为nomogram.建模组预测nomo-gram ROC曲线下面积为0.943(95%CI:0.908~0.977),验证组预测nomogram ROC曲线下面积为0.966(95%CI:0.937~0.997).校准曲线接近对角线,提示模型有良好的临床应用价值.结论 在列线图中加入LUS,可以更全面地评估病情,更准确地早期预测RMPP的发生.因此,该预测模型可广泛应用于儿童RMPP的早期诊断.
Predicting refractory mycoplasma pneumoniae pneumonia in children using lung ultrasound and clinical molecu-lar features:A nomogram approach
Objective The early diagnosis of refractory mycoplasma pneumoniae pneumonia(RMPP)is chal-lenging due to the lack of practical diagnostic imaging tools.Pulmonary ultrasound(LUS)is an emerging tool for diagno-sing pneumonia in children.This study aimed to evaluate the role of a nomogram,combining LUS,clinical features,and laboratory markers,in predicting early RMPP in children.Methods A total of 300 children with mycoplasma pneumonia were prospectively enrolled.The cohort was divided into a modeling group(200 children)and a validation group(100 children)with a 2∶1 ratio.The modeling group included 159 cases of typical mycoplasma pneumonia(CMPP)and 41 ca-ses of RMPP,while the validation group comprised 81 cases of CMPP and 19 cases of RMPP.A binary logistic regression analysis was used to assess factors influencing the occurrence of RMPP.Significant variables identified by univariate analy-sis were incorporated into a multivariate logistic regression model to identify independent risk factors for RMPP.The resul-ting predictive model was converted into a visual nomogram.The model's accuracy was evaluated using receiver operating characteristic(ROC)curves,and its calibration was assessed using calibration curves.Results Independent risk factors for RMPP included age(OR=1.286,95%CI:1.031-1.639,P=0.031),duration of fever before admission(OR=1.630,95%CI:1.248-2.219,P<0.001),high fever(OR=3.650,95%CI:0.889-18.230,P=0.089),erythro-cyte sedimentation rate(ESR)(OR=1.056,95%CI:1.027-1.090,P<0.001),and bronchial hyperinflation(OR=104.526,95%CI:16.433-1 319.111,P<0.001).The nomogram for predicting RMPP was visually represented,with an area under the ROC curve(AUC)of 0.943(95%CI:0.908-0.977)in the modeling group and 0.966(95%CI:0.937-0.997)in the validation group.The calibration curves were close to the diagonal line,suggesting good clinical applicability.Conclusion The inclusion of LUS in the nomogram provides a more comprehensive assessment of disease status,enabling more accurate early prediction of RMPP in children.Therefore,this predictive model could be widely ap-plied in the early diagnosis of RMPP in pediatric patients.

pediatric refractory mycoplasma pneumoniapulmonary ultrasoundprediction modelnomogram

邓春燕、潘代、刘贺临、郑申建、朱婷、张海燕

展开 >

锦州医科大学孝感市中心医院培养基地(湖北孝感 432100)

锦州医科大学孝感市中心医院超声科(湖北孝感 432100)

锦州医科大学孝感市中心医院儿科(湖北孝感 432100)

儿童难治性肺炎支原体肺炎 肺部超声 预测模型 列线图

2025

广东医学
广东省医学情报研究所

广东医学

影响因子:1.496
ISSN:1001-9448
年,卷(期):2025.46(1)