首页|提高公共管理实验复制的适应性:一种贝叶斯实验设计框架

提高公共管理实验复制的适应性:一种贝叶斯实验设计框架

扫码查看
近年来,公共管理实验及其复制成为提高理论可推广性的一个重要途径.然而,实验复制仍然面临一系列方法论问题有待解决:如何有效建立复制与原始研究的相关性与可比性?如何合理地设计并分析复制实验,并且允许进行灵活调整?如何优化设计来降低样本量与成本,并提高效率与效果?本文提出了一种基于贝叶斯实验的设计框架,为公共管理实验复制提供更具适应性的路径.与基于频率统计学的随机对照试验(RCT)不同,首先,贝叶斯实验可以将原始研究等背景知识作为先验概率,基于数据与似然函数进行贝叶斯更新.其次,采用后验概率而不是使用P值来检验研究假设,避免了根据显著性来报告结果等问题.在序贯情景下,可以基于先前结果快速调整后续设计,同时保证各实验臂结果的可比性.还可以基于结构性推测来确定进一步实验复制的地点、背景与样本.最后,贝叶斯实验通过将干预效果最大化问题转换为强化学习中的"多臂老虎机问题",使用汤普森采样等算法来确定性地分配样本,能显著降低样本量和实验成本,具有广泛的应用前景.
Improving the Adaptability of Experimental Replication in Public Administration:A Bayesian Experimental Design Framework
In recent years,public administration experiments and their replication have be-come an important way to improve the generalizability of theories.However,experimental replica-tion still faces a series of methodological issues that need to be addressed:how to effectively estab-lish the relevance and comparability of replication with the original study?How to design and ana-lyze replication experiments reasonably and allow for flexible adjustments?How to optimize the de-sign to reduce sample size and cost,and to improve efficiency and effectiveness?This paper proposes a design framework based on Bayesian Experiments to provide a more adaptive path for replication of public administration experiments.Unlike Randomized Controlled Trials(RCTs)based on Frequen-cy Statistics,Bayesian Experiments can,first,take background knowledge such as original research as priors and perform Bayesian updating based on data and likelihood functions.Second,the use of posterior probabilities instead of using P-values to test research hypotheses avoids problems such as P-hacking.In a sequential setting,subsequent designs can be quickly adjusted based on previous re-sults,while ensuring comparability of results across experimental arms.It is also possible to deter-mine the location,context,and sample for further experimental replication based on structural spec-ulation.Finally,Bayesian experiments can be used to transform the intervention maximization prob-lem into a"multi-armed bandit problem"in reinforcement learning by using algorithms such as as Thompson sampling to deterministically assign subjects,it could significantly reduce the sample size and experimental cost,and has a wide range of application prospects.

Experimental ReplicationGeneralizabilityRandomized Controlled TrialsBayesian ExperimentAdaptive Design

王思琦

展开 >

西南交通大学公共管理学院

实验复制 可推广性 随机对照试验 贝叶斯实验 适应性设计

国家自然科学基金面上项目

72274161

2024

公共管理与政策评论

公共管理与政策评论

CSSCI北大核心
影响因子:0.683
ISSN:
年,卷(期):2024.13(4)
  • 4