首页|基于高光谱成像技术判别马铃薯叶片干旱状态

基于高光谱成像技术判别马铃薯叶片干旱状态

扫码查看
为了准确快速地分级评估马铃薯叶片干旱状态,提出了基于高光谱成像技术的马铃薯叶片干旱状态分类方法.于 2022 年以青薯 9 号原原种为材料,通过使用高光谱成像仪获取 3 种不同干旱状态的马铃薯叶片,提取各类样本光谱反射率信息 420 个,讨论了4 种光谱数据预处理方式对建模的影响.使用基于随机森林的交叉验证递归特征消除算法(RF-RFECV)与竞争性自适应重加权抽样法(CARS)进行特征波长选择,结合极端随机树(extremely randomized trees,EXT)构建了马铃薯叶片干旱状态的分类模型.结果表明,本研究构建的3 个干旱状态分类模型,其测试集模型精度均高于 85%,其中SNV-RF-RFECV-EXT模型表现最佳,测试集预测准确率达 92.14%.同时,为直观地显示马铃薯叶片的干旱状态,选用建立的SNV-RF-RFECV-EXT模型对叶片进行干旱程度可视化,通过不同颜色直观显示叶片干旱状态,为马铃薯叶片干旱状态的判别提供了新方法.
Evaluation of drought status of potato leaves based on hyperspectral imaging
To evaluate the drought status of potato leaves accurately and quickly,a hyperspectral imaging method was employed to assess the drought status of potato leaves.In 2022,the original Qingshu No.9 seed was used as the test material.Three types of drought status were obtained using hyperspectral imaging.A total of 420 spectral reflectance measurements from various samples were extracted and the influence of four spectral data pre-processing methods on modeling was discussed.A classification model for the drought status of potato leaves was con-structed using the random forest cross-validation recursive feature elimination algorithm(RF-RFECV)and the feature wavelength selection method of competitive adaptive reweighted sampling(CARS)methods combined with ex-tremely randomized trees(EXT).The results showed that the three drought status classification models constructed in this study had accuracy higher than 85%in the test set,among which the SNV-RF-RFECV-EXT model performed the best with a prediction accuracy of 92.14%in the test set.To visually assess the drought status of potato leaves,the SNV-RF-RFECV-EXT model was applied to depict the degree of drought.Different colors were used to represent va-rying levels of drought,offering a novel approach for distinguishing the drought conditions of potato leaves.

potatodrought stress identificationhyperspectral imagingcharacteristic wavelengthsmodel con-struction

梅轩铭、胡耀华、张浩天、蔡雨卿、罗凯天、孟玉玲、宋银、单卫星

展开 >

西北农林科技大学农学院,陕西 杨凌 712100

浙江农林大学光机电工程学院,浙江 临安 311300

马铃薯 干旱状态判别 高光谱成像 特征波长 模型构建

中国科学院战略性先导科技专项杨凌种业创新中心重点研发项目

XDA23070201Ylzymls-02

2024

干旱地区农业研究
西北农林科技大学

干旱地区农业研究

CSTPCD北大核心
影响因子:1.021
ISSN:1000-7601
年,卷(期):2024.42(5)
  • 11