首页|内蒙古冰雹特征及基于机器学习的冰雹识别方法研究

内蒙古冰雹特征及基于机器学习的冰雹识别方法研究

扫码查看
利用1959-2021年内蒙古人工观测冰雹记录,分析冰雹分布的时空特征,并基于机器学习算法构建了冰雹识别方法。结果表明:(1)时间分布上,冰雹事件出现的站数和站日数均呈现下降趋势;空间分布上,冰雹多集中在阴山山脉和大兴安岭一带,冰雹多发区沿山脉伸展分布。(2)冰雹发生具有明显的季节变化和日变化特征,每年5-9月是冰雹频发月份,占全年雹日的91。79%,雹日中12:00-19:00是冰雹的多发时段。(3)利用随机森林、LightGBM、K近邻和决策树4种机器学习算法,通过数据预处理、预报因子选择、模型训练、模型调优等步骤,对内蒙古冰雹天气过程进行建模与评估。评估结果表明,采用机器学习方法可以有效地识别冰雹天气过程,各模型的TS评分均达到0。83以上,命中率达到92%以上,随机森林算法在测试集上识别效果最优。研究结果可为内蒙古冰雹预报预警和人工防雹工作提供参考。
Hail characteristics and hail recognition method based on machine learning in Inner Mongolia
Based on the manual observation of hail records in Inner Mongolia,China,from 1959 to 2021,the spa-tial and temporal characteristics of hail distribution are analyzed,and a hail recognition method is constructed based on machine learning algorithms.The results are as follows:(1)Regarding temporal distribution,the num-ber of hail days and affected stations in Inner Mongolia shows a decreasing trend.In terms of spatial distribution,hail events are predominantly concentrated in the Yinshan Mountains and the Greater Hinggan Mountains,with hail-prone areas extending along these mountain ranges.(2)Hail exhibits distinct seasonal and diurnal characteris-tics.The peak hail months in Inner Mongolia are from May to September,accounting for 91.79%of the annual hail days.The most frequent period for hail occurrences is between 12:00 BST and 19:00 BST.(3)Four machine learning algorithms(random forest,LightGBM,K-proximity,and decision tree)are used to model and evaluate hail events in Inner Mongolia through data preprocessing,predictor selection,model training,and tuning.Verifi-cation results indicate that machine learning methods effectively identify hail events,with the threat score of each model exceeding 0.83 and hit rates surpassing 92%.Among these,the random forest algorithm demonstrates the best recognition performance on the test set.These findings provide useful references for hail forecasting and arti-ficial hail prevention in Inner Mongolia.

the number of hail station daystemporal and spatial characteristicsmachine learninghail identifi-cation

辛悦、苏立娟、郑旭程、李慧、衣娜娜、靳雨晨

展开 >

内蒙古自治区人工影响天气中心,内蒙古 呼和浩特 010051

内蒙古自治区气象科学研究所,内蒙古 呼和浩特 010051

冰雹站日数 时空特征 机器学习 冰雹识别

2025

干旱区地理
中国科学院新疆生态与地理研究 中国地理学会

干旱区地理

北大核心
影响因子:1.863
ISSN:1000-6060
年,卷(期):2025.48(1)