首页|中国家庭消费间接碳排放空间关联结构演变——基于社会网络分析法

中国家庭消费间接碳排放空间关联结构演变——基于社会网络分析法

扫码查看
把握家庭消费间接碳排放的空间聚类及结构特征对于中国在新发展格局下实现"双碳"目标具有重要意义。在测算出中国家庭消费间接碳排放量的基础上,运用社会网络分析法探究2013-2022年中国家庭消费间接碳排放空间关联网络结构特征。结果表明:(1)家庭消费间接碳排放量整体呈上升趋势,10 a间增长了1。2倍;其中"食品""居住""交通通信"和"教育文化娱乐"为主构成部分,占总量的75%。(2)整体网络特征:以江苏、北京、浙江、上海等省市为中心,呈"核心-边缘"分布趋势。其中,网络密度和关联数有所下降,等级梯度和关联密度有所上升。(3)块模型特征:按照节点溢出和接收效应划分为四大板块,即"净溢出""净受益""经纪人"和"双向溢出",各板块在空间关联领域中扮演不同角色。(4)个体网络特征:上海、江苏、浙江等省市中心度最高位于关联网络的核心区域,空间关联性影响显著,具有向外辐射的特点,而青海、黑龙江等省份处于关联网络边缘区域,关联效应较弱。
Evolution of spatial correlation structure of indirect carbon emissions from household consumption in China:Based on social network analysis
Understanding the spatial clustering and structural characteristics of indirect carbon emissions from household consumption is crucial for China to achieve the"carbon peaking and carbon neutrality"goal under its new development framework.This study calculates indirect carbon emissions from household consumption in China and examines the structural characteristics of the spatial correlation network for these emissions from 2013 to 2022 using social network analysis.The findings reveal the following:(1)Indirect carbon emissions from household consumption exhibit an overall upward trend,increasing 1.2-fold over ten years.Emissions from"food","housing","transport and communication",and"education,culture,and entertainment"constitute 75%of the total.(2)Overall network characteristics:The overall network structure,centered on provinces and cities such as Jiangsu Province,Beijing City,Zhejiang Province,and Shanghai City,demonstrates a"core-edge"distri-bution pattern.Network density and the number of associations have declined,while grade gradient and associa-tion intensity have increased.(3)Characteristics of the block model:Regional network characteristics,based on node spillover and reception effects,are categorized into four segments:"net spillover","net benefit","broker",and"two-way spillover",and each segment plays different roles in the field of spatial correlation.(4)Individual network characteristics:Regarding individual network characteristics,provinces such as Shanghai City,Jiangsu Province,and Zhejiang Province,with the highest degree of centrality,occupy the core areas of the correlation network and exhibit significant spatial correlation and outward radiation effects.In contrast,provinces such as Qinghai Province and Heilongjiang Province,located on the periphery,exhibit weaker correlation effects.

indirect carbon emissions from household consumptionspatially associative networkssocial net-work analysisgravitational model

付伟、巩海秀、陈建成

展开 >

西南林业大学经济管理学院,云南 昆明 650233

北京林业大学经济管理学院,北京 100083

家庭消费间接碳排放 空间关联网络 社会网络分析 引力模型

2025

干旱区地理
中国科学院新疆生态与地理研究 中国地理学会

干旱区地理

北大核心
影响因子:1.863
ISSN:1000-6060
年,卷(期):2025.48(1)