首页|冰封-非冰封条件下达里湖TDS空间变化及影响因素

冰封-非冰封条件下达里湖TDS空间变化及影响因素

扫码查看
溶解性固体总量(TDS)是水循环过程的关键示踪剂之一.特别是寒旱区,湖泊既经历冬季冰封期,也会接受夏季集中大气降水输入,这导致不同深度湖水TDS含量对应了补给源水化学特征.基于此,文中以内蒙古达里湖为目标,持续采集了 2018至2020年湖水(冰)等样品共324个,系统分析了湖泊TDS含量的变化特征,并结合氢、氧稳定同位素(δD和δ18O)变化,探讨了冰封-非冰封状态下补给源差异对TDS变化的影响.结果表明:1)冰封条件下冰中TDS含量较低(平均约213mg/L),对应冰体中δD和δ18O值最富集(约-24.25‰和-1.22‰),而水体TDS含量相对较高(平均约483mg/L),但δD和δ18O值相对贫化(约-33.56‰和-2.35‰);在非冰封期,TDS含量随水深增加小幅下降,而δD值和δ18O值(平均值-32.375‰和-2.09‰)则比冬季水体更加富集.特别地,夏季湖水d-excess值明显偏负,显示大气降水等补给量增加.2)虽然达里湖水样中TDS与δD、δ18O值变化过程相似,但是由于不同水深补给源以及外界环境条件差异导致于表层水主要受大气降水、河流输入和结冰过程等影响而深层水主要受地下水输入影响,因此造成表层水中TDS与同位素值相关性在非冰封阶段较低,而冰封条件下由于"冷冻浓缩"影响而相关性较高;而底层水受不同深度地下水补给过程差异影响,导致深水区(水深>7.Om)底层水TDS含量与同位素值的相关性在冰封-非冰封条件下均较高.特别地,达里湖TDS含量变化与d-excess值呈明显反相关系,指示蒸发和大气降水对湖泊水文化学特征的影响,进一步显示TDS含量变化受到水文循环过程的影响.
Spatial variation of TDS in Lake Dari under ice-covered-non-ice-covered conditions and its influencing factors
Total dissolved solids(TDS)is one of the key tracers for water cycle processes.Especially in cold and arid regions,lakes experience both periods of icebound in winter and concentrated atmospheric precipitation inputs in summer,which leads to the chemistry characteristics that the TDS contents at different depths of lake correspond to the different recharge sources.Based on this,in this paper,a total of 324 lake water(ice)and other samples were continuously collected from 2018 to 2020,targeting Dali Lake in Inner Mongolia,to systematically analyze the characteristics of the changes in lake TDS content,and to explore the effects of the differences in the recharge sources on the changes in TDS under the ice-covered-non-ice-covered state in conjunction with the changes in the stable isotopes of hydrogen and oxygen(δD and δ18O).The results showed that:1)In icebound period,the lower TDS content(mean~213mg/L)in ice corresponded to the most enrichedδD and δ18O values in the ice body(~-24.25‰ and-1.22‰),whereas the water body had a relatively high TDS content(mean~483mg/L)with relatively impoverished δD and δ18O values(~-33.56‰ and-2.35‰).In the non-icebound period,the TDS content decreased with a water depth decreased slightly,whileδD and δ18O values(mean values-32.375‰ and-2.09‰)were more enriched than in winter waters.In particular,the d-excess values of the water were significantly negative in summer,indicating that recharge from atmospheric precipitation and other sources increased.2)Although the process of TDS,δD and δ18O values in Lake Dari water samples was similar,the correlation between TDS and isotope values in surface water was lower in the non-icebound period and higher in the icebound period due to the"freeze concentration"effect,while the correlation between TDS and isotope values in bottom water was higher in the deep water(water depth>7.0 m)due to the difference in groundwater recharge process in different depths,which resulted in a higher correlation between TDS and isotope values in deep water(water depth>7.0m).The correlation between TDS and isotope values in surface water was lower in the non-icebound period and higher in the icebound period due to the influence of"freeze concentration",while the correlation between TDS and isotope values in the deep water(water depth>7.0m)was higher in whole year due to the influence of the groundwater recharge process at different depths in the bottom water.In particular,the changes in TDS content in Lake Dari showed a significant inverse relationship with d-excess values,indicating the influence of evaporation and atmospheric precipitation on the hydrochemical characteristics of the lake,and further indicating that the changes in TDS content are influenced by hydrological cycle processes.

total dissolved solids(TDS)hydrogen and oxygen isotopesrecharge sourcesicebound periodDali Lake

张博尧、李文宝、郭鑫、史玉娇、杜蕾

展开 >

内蒙古农业大学职业技术学院,包头 014000

内蒙古农业大学水资源利用与保护自治区重点实验室,呼和浩特 010018

TDS 氢氧同位素 补给来源 冰封期 达里湖

国家自然科学基金内蒙古自治区自然科学基金内蒙古自治区科技攻关计划内蒙古自治区高等学校"青年科技英才"项目内蒙古自治区科研项目

521600212021MS05 0432020GG0009NJYT-20-A14NJZY21502

2024

干旱区资源与环境
中国自然资源学会干旱半干旱地区研究委员会 内蒙古农业大学

干旱区资源与环境

CSSCICHSSCD北大核心
影响因子:1.492
ISSN:1003-7578
年,卷(期):2024.38(8)