首页|基于PMC指数模型的耕地保护补偿政策量化评价

基于PMC指数模型的耕地保护补偿政策量化评价

扫码查看
对耕地保护补偿政策进行梳理与评价,可为今后相关政策制定、调整和完善提供参考。文中采用文本挖掘并结合内容分析法建立政策评价指标体系,通过构建PMC指数模型对我国11 个省份52 项耕地保护补偿政策进行量化评价,并提出政策改进路径。结果表明:1)政策总体设计较为合理,浙江、江苏、广西、广东和上海5 个省份政策等级为优秀,陕西、四川、山东、北京、安徽和湖北6 个省份政策等级为可接受,无不良和完美政策,其整体评分较高。2)各省政策在政策重点、政策设计和政策作用方面优势明显,但存在政策激励不足、政策时效有限、政策受众不够广泛和政策评价不够全面等问题,仍有一定提升空间。基于此,对完善我国耕地保护补偿政策提出相关建议。
Quantitative evaluation of farmland protection compensation policy based on PMC index model
The review and evaluation of farmland protection compensation policies can provide valuable reference for the formulation,adjustment and improvement of relevant policies in the future.This study employs text mining and content analysis methods to establish a policy evaluation index system,and constructs a PMC index model to quantitatively evaluate 52 cultivated farmland protection compensation policies across 11 provinces in China and proposes a pathway for policy improvement.The results indicate that:1)The overall policy design is reasonable.Five provinces,namely Zhejiang,Jiangsu,Guangxi,Guangdong and Shanghai,exhibit excellent policy grades,while six provinces,including Shaanxi,Sichuan,Shandong,Beijing,Anhui and Hubei,have acceptable policy grades.There are no instances of poor policies or perfect policies,and the overall score is high.2)All policies demonstrate evident strengths in terms of policy focus,design and role.However,there are still some issues such as insufficient policy incentives,limited policy timeliness,inadequate policy audiences,and insufficient comprehensive policy evaluation persist,indicating room for further improvement.Based on these findings,several suggestions are proffered to enhance the compensation policy for farmland protection in our country.

farmland protection compensationquantitative evaluation of policiesPMC index modeltext mining

孙怡平、蔡银莺、谢晋

展开 >

华中农业大学公共管理学院,武汉 430070

湖南农业大学公共管理与法学学院,长沙 410128

耕地保护补偿 政策量化评价 PMC指数模型 文本挖掘

2024

干旱区资源与环境
中国自然资源学会干旱半干旱地区研究委员会 内蒙古农业大学

干旱区资源与环境

CSSCICHSSCD北大核心
影响因子:1.492
ISSN:1003-7578
年,卷(期):2024.38(12)