首页|基于多类别特征点匹配的紧耦合激光惯性里程计

基于多类别特征点匹配的紧耦合激光惯性里程计

扫码查看
针对现有的激光SLAM在室外动态场景建图时,LiDAR数据存在运动畸变、地面采样数据稀疏造成激光里程计精度低的问题,提出了一种基于多类别特征点匹配的IMU紧耦合里程计方法.首先,从原始点云数据入手,通过IMU数据对每一帧LiDAR数据进行线性插值校正畸变点云,以提高LiDAR数据的质量;其次,对畸变校正后的点云进行2D网格投影,根据每个网格与其相邻网格的最小高度平均值大小,利用双阈值将网格中点云划分为地面点和非地面点,再根据局部特征的线性度、平面度、曲率等,将非地面点进一步划分得到多类别特征点;再次,对多类别特征点匹配的IMU紧耦合进行建模,考虑到原本的LiDAR观测误差无法提供高精度的重力矢量估计,引入IMU状态估计,构建里程计误差函数,使得重力矢量估计得到进一步约束,抑制了重力矢量方向上的漂移,有效提升了激光里程计的精度;最后,基于LeGO-LOAM框架设计了基于多类别特征点匹配的IMU紧耦合激光里程计,并完成了验证系统的搭建.实验结果表明,该方法能有效抑制重力矢量方向上的漂移,提高激光里程计的精度.
Tightly coupled LiDAR-inertia odometry based on multi-class feature point matching
Aiming at the problems of low precision of laser odometer due to motion distortion of LiDAR data and sparse ground sampling data,a tightly coupled IMU odometer method based on multi-class feature point matc-hing is proposed in this paper.In order to improve the quality of LiDAR data,it firstly starts with the original point cloud data and then uses IMU data to perform linear interpolation to correct the distorted point cloud in each frame of LiDAR data.Secondly,after distortion correction,it performs a 2D grid projection on the point cloud.According to the average minimum height of each grid and its adjacent grids,the point cloud in the grid is divided into ground points and non-ground points,using a dual threshold.Then,the non-ground points are further divided to obtain multi-class feature points according to linearity,flatness,curvature and other local fea-tures.Thirdly,it models the tight coupling of IMU for multi-class feature point matching.Considering that the original LiDAR observation error cannot provide high-precision gravity vector estimation,it introduces IMU state estimation,builds odometer constraint error function,and makes a further constraint on the estimation of gravity vector.Thus,the precision of laser odometer is improved effectively.Finally,an IMU tightly coupled laser o-dometer based on multi-class feature point matching is designed based on LeGO-LOAM framework,and the veri-fication system is completed.Experimental results show that this method can effectively suppress the drift of gravity vector and improve the precision of laser odometer.

multi-class feature pointsfeature point matchinglaser odometerIMU tight couplingSLAM

李春海、苏昭宇、陈倩、唐欣、李晓欢

展开 >

桂林电子科技大学信息与通信学院,广西桂林 541004

广西综合交通大数据研究院,南宁 530025

桂林信息科技学院,广西桂林 541004

多类别特征点 特征点匹配 激光里程计 IMU紧耦合 SLAM

广西自然科学基金项目广西重点研发计划项目

2019GXNSFFA245007AB21196032

2024

桂林理工大学学报
桂林理工大学

桂林理工大学学报

CSTPCD北大核心
影响因子:0.618
ISSN:1674-9057
年,卷(期):2024.44(3)