首页|基于SSA-ELM算法的基坑地表沉降预测

基于SSA-ELM算法的基坑地表沉降预测

扫码查看
针对传统的极限学习机算法(ELM)在进行深基坑的地表沉降预测时易陷入局部极小、网络结构中参数选取不准确及预测精度不佳等问题,提出了一种基于麻雀搜索算法(SSA)优化极限学习机算法的基坑地表沉降预测模型.根据麻雀搜索算法收敛速度快、寻优能力与稳定性较强等特点,对极限学习机算法中的连接权值与阈值进行优化,并将优化后的模型应用于基坑的地表沉降预测.将麻雀搜索算法优化后的极限学习机算法(SSA-ELM)与ELM、GA-ELM、PSO-ELM算法进行预测精度对比,结果表明:SSA-ELM算法的预测精度高于ELM、GA-ELM、PSO-ELM算法,且其稳定性更强,在基坑的地表沉降预测方面效果更好,实现了提高预测精度的目的,具有一定的可行性和实用性.
Prediction of foundation pit surface settlement based on SSA-ELM algorithm
The traditional extreme learning machine(ELM)algorithm is prone to fall into local minimum,inac-curate parameter selection in network structure and poor prediction accuracy when it is used to predict the sur-face settlement of deep foundation pit.A prediction model of foundation pit surface settlement based on sparrow search algorithm(SSA)optimized extreme learning machine algorithm is proposed.According to the characteris-tics of sparrow search algorithm,such as fast convergence speed,strong optimization ability and stability,the connection weights and thresholds in the extreme learning machine algorithm are optimized.The optimized mod-el is applied to the prediction of foundation pit surface settlement.The prediction accuracy of the sparrow search algorithm optimized extreme learning machine algorithm(SSA-ELM)is compared with the traditional ELM algo-rithm,GA-ELM and PSO-ELM algorithms.The experimental results show that the prediction accuracy of SSA-ELM algorithm is higher than the traditional ELM algorithm,GA-ELM algorithm and PSO-ELM algorithm,and the SSA-ELM algorithm is more stable,which has better effect in the prediction of ground settlement of the foun-dation pit.The SSA-ELM algorithm has achieved the purpose of improving the accuracy of prediction,and has certain feasibility and practicality.

extreme learning machinesparrow search algorithmoptimizationsettlement predictionfounda-tion pit

刘银涛、任超

展开 >

桂林理工大学测绘地理信息学院,广西桂林 541006

桂林理工大学广西空间信息与测绘重点实验室,广西桂林 541006

极限学习机 麻雀搜索算法 优化 沉降预测 基坑

国家自然科学基金项目广西高校中青年教师科研基础能力提升项目广西空间信息与测绘重点实验室基金项目

420640032021KY026816-380-25-25

2024

桂林理工大学学报
桂林理工大学

桂林理工大学学报

CSTPCD北大核心
影响因子:0.618
ISSN:1674-9057
年,卷(期):2024.44(3)