首页|机载DOM面向对象的改扩建公路沿线主要地物提取研究

机载DOM面向对象的改扩建公路沿线主要地物提取研究

扫码查看
针对改扩建公路沿线地物信息提取难度大、工期紧等问题,以成南高速扩容项目(成都螺狮坝立交附近)的机载高分辨率DOM遥感影像为研究对象,运用KNN、CART、SVM等 3 种面向对象分类方法,对该扩容高速沿线左右约300 m范围内带状区域进行主要地物信息提取与分类研究.结果表明:1)最优分割尺度的确定是一个复杂过程,且受到多种因素的制约,通过运用ESP工具简化获取最优分割尺度,并取得了较好影像分割效果;2)3 种面向对象分类结果基本满足了改扩建公路工程前期规划、设计和施工建设的精度要求,3 种方法在基于同一训练样本与验证样本数据基础上,就分类精度而言,SVM>CART>KNN,就具体地物而言,居民用地、交通运输用地、植被和水体等地物的分类精度相对较高,裸地、大棚和其他等地物的分类精度相对较低;3)3 种分类方法技术先进、经济高效,且对于改扩建公路沿线地物自动化智能化提取及其在数字化交通中的应用具有显著的实际价值.
Study of Object-oriented Extraction of Main Features along Reconstructed and Expanded Highway with Airborne DOM
Aiming at the problems of great difficulty in extracting feature information along the reconstruction and expansion highway and the tight schedule,we take the airborne high-resolution DOM remote sensing image of the Chengdu south expressway expansion project(near Chengdu Luoshiba interchange)as the research object,and use three object-oriented classification methods,such as KNN,CART,SVM,etc.,to extract and classify the main feature information in the belt area within the left and right of this highway within the range of about 300m.The results show that:1)the determination of the optimal segmentation scale is a complex process and is constrained by many factors.In this paper,the ESP(Estimation of Scale Parameter)tool is used to simplify the acquisition of the optimal segmentation scale,which achieves good image segmentation results;2)the three object-oriented classification results basically meet the accuracy requirements for the pre-planning,design,and construction of the reconstruction and expansion of highway projects;the three methods are based on the same training samples and validation samples.In terms of classification accuracy,SVM>CART>KNN,and in terms of specific features,the classification accuracy of features such as residential land,transport land,vegetation and water bodies is relatively high,and the classification accuracy of features such as bare land,sheds and other features is relatively low;3)the three classification methods are not only technologically advanced and economically efficient,but also have significant practical value for the automated and intelligent extraction of features along the reconstructed and expanded highway and their application in digital transport.

airborne DOM imagereconstruction and expansion of expresswayobject-oriented classificationfeature extraction

刘超群、朱运权、马学良、夏波、曹明明、刘敏、李贞

展开 >

四川省交通勘察设计研究院有限公司,成都 610017

昆明理工大学 建筑与城市规划学院,昆明 650550

成都文理学院 信息工程学院,成都 610401

机载DOM影像 改扩建高速公路 面向对象分类 地物提取

四川省交通运输科技项目四川省交通勘察设计研究院有限公司科技项目四川省交通勘察设计研究院有限公司科技项目

2019-ZL-13232022015232022016

2024

公路交通技术
重庆交通科研设计院

公路交通技术

影响因子:0.552
ISSN:1009-6477
年,卷(期):2024.40(2)
  • 21