首页|基于沥青路面纹理解构的轮胎/路面噪声预测方法研究

基于沥青路面纹理解构的轮胎/路面噪声预测方法研究

扫码查看
轮胎/路面噪声TPIN已成为城市环境噪声污染的重要组成部分,路面纹理是TPIN的重要影响因素.采用三维激光扫描技术获得路面点云数据,建立路面纹理三维模型,根据灰度共生矩阵(GLCM)、分形理论(FD)和功率谱密度理论(PSD)计算整体、宏观和微观纹理指标对路面纹理进行解构,建立基于纹理指标的TPIN线性回归和随机森林预测模型.结果表明:1)3 种理论所计算的纹理指标可有效解构纹理,与TPIN有较好的相关性;2)车速在60 km/h时,TPIN与微观纹理的相关性更强,路面关键波长与噪声测试的轮胎波长有关;3)随机森林的预测精度高于单因素预测模型,最佳预测精度为R2=0.988 5,MSE=0.000 4,预测效果较好.因此,可将路面纹理作为有效评价TPIN的方法.
Research on the Prediction Method of Tire/Pavement Noise Based on Asphalt Pavement Texture
Tire/Pavement Interaction Noise(TPIN)has become an important aspect of urban environmental noise pollution,and pavement texture is a significant influencing factor of TPIN.Three-dimensional laser scanning technology was utilized to acquire pavement point cloud data,create a three-dimensional model of pavement texture,and analyze the pavement texture by computing overall,macro,and micro texture indices using the gray level covariance matrix(GLCM),fractal theory(FD),and power spectral density theory(PSD).Subsequently,a linear regression and random forest prediction model of TPIN was developed based on the texture index.The results show that:1)The texture metrics calculated by the three theories can effectively deconstruct the texture and have good correlation with TPIN;2)The correlation between TPIN and micro-texture is stronger when the vehicle speed is at 60 km/h,and the critical wavelength of the pavement is related to the tire wavelength of the noise test;3)The prediction accuracy of random forest is higher than that of a one-factor prediction model,and the optimal prediction accuracy is R2=0.988 5,MSE=0.000 4.The prediction effect is better.Therefore,pavement texture can be used as a method to effectively evaluate TPIN.

asphalt pavementtexture indexcorrelation analysistire/pavement interaction noise

丁婷婷、张勋

展开 >

山东省交通规划设计院集团有限公司,济南 250101

重庆大学 土木工程学院,重庆 400045

沥青路面 纹理指标 相关性分析 轮胎/路面噪声

2024

公路交通技术
重庆交通科研设计院

公路交通技术

影响因子:0.552
ISSN:1009-6477
年,卷(期):2024.40(2)
  • 21