首页|基于多粒子群零样本神经架构搜索的道路病害预测

基于多粒子群零样本神经架构搜索的道路病害预测

扫码查看
为解决道路病害预测中手工设计网络面临的效率低,准确性差以及易陷入局部最优的问题,提出基于多粒子群零样本神经架构搜索方法,自动探索用于道路病害预测的最佳神经架构.先利用多粒子群策略在尺度自适应搜索空间初始化高质量架构;后采用粒子群动态自适应更新架构,防止陷入局部最优;再结合零样本学习、参数和浮点运算进行多目标优化,实现轻量化并提高预测精度.结果表明:1)尺度自适应搜索空间能有效捕捉多尺度道路病害信息;2)粒子群动态自适应更新避免了搜索过程陷入局部最优;3)多目标优化使得算法在分类准确率、F1 分数、卡帕系数、AUC、指数平衡和搜索效率方面分别提升 19.34%、23.37%、23.77%、4.28%、20.26%和 91.30%.
Road Disease Prediction Based on Multi-particle Swarm Zero Sample Neural Architecture Search
To solve the problems of low efficiency,poor accuracy and easy to fall into local optimal in road disease prediction,a multi-particle swarm zero sample neural architecture search method is proposed to automatically explore the optimal neural architecture for road disease prediction.Firstly,the multi-particle swarm strategy is used to initialize the high-quality architecture in the scale-adaptive search space.Then particle swarm dynamic adaptive update architecture is used to prevent local optimization.Finally,zero-sample learning,parameter and floating-point operation are combined for multi-objective optimization to achieve lightweight and improve prediction accuracy.The results show that:1)Scale adaptive search space effectively captures multi-scale road disease information;2)PSO dynamic adaptive updating effectively prevents the search process from falling into local optimization;3)Multi-objective optimization improves the classification accuracy,F1 score,Kappa coefficient,AUC,exponential balance and search efficiency by 19.34%,23.37%,23.77%,4.28%,20.26%and 91.30%,respectively.

road disease predictionparticle swarmscale adaptivemulti-objective optimizationneural architecture search

章一颖、郑杰、贺春林、谭睿、徐黎明、李林波、何利蓉、刘昊、侯晓宁

展开 >

西华师范大学 计算机学院,四川 南充 637002

北华航天工业学院 建筑工程学院,河北 廊坊 065000

招商局公路信息技术(重庆)有限公司,重庆 400067

重庆市市政设施运行保障中心,重庆 400015

重庆物康科技有限公司,重庆 400067

展开 >

道路病害预测 粒子群 尺度自适应 多目标优化 神经架构搜索

2024

公路交通技术
重庆交通科研设计院

公路交通技术

影响因子:0.552
ISSN:1009-6477
年,卷(期):2024.40(6)