首页|SDD#1矩阵逆的无穷大范数的上界及其应用

SDD#1矩阵逆的无穷大范数的上界及其应用

扫码查看
提出了非奇异H-矩阵的一个新的子类——SDD#1矩阵,得到了SDD#1矩阵的几个性质,并讨论了SDD#1矩阵与其他H-矩阵子类之间的关系.基于这些性质,获得了SDD#1矩阵逆的无穷大范数的上界.作为应用,给出了SDD#1矩阵线性互补问题的误差界.数值算例表明了新界优于现有的一些结果.
Upper Bound Estimations for Infinity Norm of Inverse of SDD#1 Matrices and Its Applications
In this paper,we introduce a new subclass of nonsingular H-matrices called SDD#1 matrices,give several characteristics of SDD#1 matrices,and study the relationship between SDD#1 matrices and other subclasses of H-matrices.Based on these characteristics,an infinity norm upper bound for the inverse of SDD#1 matrices is proposed.As an application,error bound of the linear complementarity problems involving SDD#1 matrices is presented.Numeri-cal examples show that the obtained results are better than some existing ones in some cases.

SDD#1 matrixH-matrixinfinity normserror boundslinear complementarity problems

冉文文、王峰

展开 >

贵州民族大学数据科学与信息工程学院,贵州贵阳 550025

SDD#1矩阵 H矩阵 无穷大范数 误差界 线性互补问题

2025

兰州文理学院学报(自然科学版)
甘肃联合大学

兰州文理学院学报(自然科学版)

影响因子:0.342
ISSN:2095-6991
年,卷(期):2025.39(1)