首页|基于嵌套U型的3D脑MRI配准网络

基于嵌套U型的3D脑MRI配准网络

扫码查看
针对传统的基于U-Net的图像配准网络对图像细节信息提取不够精确的问题,引入了一种嵌套的U型配准网络,在网络的每级编码解码阶段引入RSU-L的U型残差模块,并且在U型网络中的解码阶段每上采样一次均生成配准场,最后将配准场进行叠加得到最终的配准形变场.在公开数据集中,与传统的ANTs、Voxel-morph 和最新的Transmorph网络相比,提出的嵌套U型网络在Dice系数上提升了1%~11%,增加了网络模型在图像配准任务上的精确度,对于临床诊断具有一定的帮助.
3D Brain MRI Registration Network Based on Nested U-Shapes
To address the issue of inaccurate extraction of image details in traditional U-Net based image registration networks,a nested U-shaped registration network is introduced.The U-shaped residual module of RSU-L is introduced in each encoding and decoding stage of the network,and a registration field is generated every time the decoding stage in the U-shaped network is upsampled.Finally,the registration field is superimposed to obtain the final regis-tration deformation field.In open datasets,compared with traditional ANTs,Voxelmorph,and the latest Transmorph networks,the proposed nested U-shaped network improves the Dice coefficient by 1%to 11%,increased the accuracy of network models for image registra-tion tasks and providing some assistance for clinical diagnosis and treatment.

image registrationnested structureU-shaped networkregistration field fusionresidual structure

孙克雷、童波、潘宇

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232000

安徽理工大学人工智能学院,安徽淮南 232000

图像配准 嵌套结构 U型网络 配准场融合 残差结构

2025

兰州文理学院学报(自然科学版)
甘肃联合大学

兰州文理学院学报(自然科学版)

影响因子:0.342
ISSN:2095-6991
年,卷(期):2025.39(1)