首页|改进RCNN算法在建筑结构损失识别中的应用研究

改进RCNN算法在建筑结构损失识别中的应用研究

扫码查看
灾难事件发生后,如何及时准确地评估建筑结构损失情况,成为灾后救援的重要问题之一.传统的人工评估方法存在耗时耗力、准确度低等问题.为了提高建筑结构损失识别的准确度,提出一种基于区域的卷积神经网络,引入候选区域生成网络,构建用于生成网络候选区并对其进行分类和位置回归的模型.结果显示,研究模型在不同类型建筑损失识别中的准确度均高于90%;在模型对比分析中,当迭代次数大于2500时,目标检测深度学习算法(Faster Region-based Convolutional Neural Networks,Faster-RCNN)相比其他 4 种模型的平均精度更高,且波动幅度更小.本文改进深度学习(Region-based Convolutional Neural Networks,RCNN)算法对建筑损伤识别的效果好,结果具有可信度.
Application of Improved RCNN Algorithm in Loss Identification of Building Structures
After disaster events,how to timely and accurately assess the loss of building struc-tures has become one of the important problems in post-disaster rescue.The traditional man-ual evaluation method has the problems of time consuming and low accuracy.In order to im-prove the accuracy of structural loss identification,this study introduced the candidate region generation network based on the convolutional neural network,which was used to generate the network candidate region,classify it and perform location regression.The results show that the accuracy of Faster-RCNN in building loss identification of this research model is high-er than 90%,which is higher than the other two algorithms.In model comparative analysis,when the number of iterations is greater than 2500,the average accuracy of Faster-RCNN is higher and the fluctuation range is smaller than that of the other four models.In conclusion,the improved RCNN algorithm in this study has a good effect on building damage identifica-tion,and the results are reliable.

building structuredeep learningloss identificationfeature segmentationRCNN

陈馨怡、李晓林

展开 >

安徽职业技术学院,建筑工程学院,安徽 合肥 230011

安徽省水利科学研究院,安徽 合肥 230088

建筑结构 深度学习 损失识别 特征分割 RCNN

2025

兰州文理学院学报(自然科学版)
甘肃联合大学

兰州文理学院学报(自然科学版)

影响因子:0.342
ISSN:2095-6991
年,卷(期):2025.39(1)