首页|基于Mask R-CNN的地质雷达岩溶预报图像识别研究

基于Mask R-CNN的地质雷达岩溶预报图像识别研究

Study on Karst Forecast Image Recognition with Geological Radar Based on Mask R-CNN

扫码查看
岩溶隧道开挖可能遭遇岩溶涌水、突泥等岩溶地质灾害,地质雷达能够有效预报岩溶等地质灾害.然而,传统地质雷达图像解译存在专家经验依赖性强、解译效率慢且易误判漏判等情况.本文采用可实现端到端识别的深度学习技术开展地质雷达图像目标检测与识别的研究,将基于Mask R-CNN的卷积神经网络算法应用于地质雷达岩溶预报图像异常的智能识别.在TensorFlow和Keras框架下,利用地质雷达设备采集获得的数据构建训练数据集和测试数据集,对Mask R-CNN深度学习模型进行训练,最终得到权重参数较好的地质雷达岩溶预报图像的双曲异常检测模型.试验结果及应用案例表明,Mask R-CNN目标检测方法在地质雷达岩溶预报图像的目标检测与识别上取得了良好的效果,有效提高了地质雷达图像的智能化识别效率.
Tunnel excavation in karst regions may encounter karst-related geological hazards such as sudden karst water bursts and mud flows.Geological radar is effective in forecasting such karstic and other geological events.However,traditional interpretation of geological radar images heavily relies on expert knowledge,is time-consuming,and is prone to misinterpretation or oversight.This paper explored the use of deep learning technology,specifically designed for end-to-end recognition,in the context of geological radar image object detection and identification.It applied the convolutional neural network algorithm based on Mask R-CNN for intelligent identification of anomalies in karst forecast images generated by geological radar.Under the TensorFlow and Keras frameworks,a training dataset and a test dataset were constructed using data acquired from geological radar.The Mask R-CNN deep learning model was trained on these datasets,ultimately yielding a robust model with better weight parameters for detecting hyperbolic anomalies in karst forecast geological radar images.Experimental results and case studies demonstrate that the Mask R-CNN object detection method achieves excellent performance in detecting and identifying targets within geological radar karst forecast images,significantly enhancing the efficiency of intelligent recognition for geological radar imagery.

geological radarMask R-CNNkarst cavitiesintelligent recognition

伊小娟、罗威、李伟、王志军、尹小康

展开 >

中铁二院工程集团有限责任公司,成都 610031

成都理工大学,成都 610000

地质雷达 Mask R-CNN 岩溶空洞 智能识别

2024

高速铁路技术
中国中铁二院工程集团有限责任公司

高速铁路技术

影响因子:0.398
ISSN:1674-8247
年,卷(期):2024.15(2)
  • 20