首页|基于改进灰色预测模型的铁路客运量预测研究

基于改进灰色预测模型的铁路客运量预测研究

Study on Railway Passenger Volume Forecast Based on an Improved Grey Forecasting Model

扫码查看
为提高灰色预测模型在铁路客运量预测的精度,提出对样本数据的累加生成序列进行函数拟合,再通过求其函数定积分的方法来改进灰色预测模型背景值,并以上海市铁路客运量预测为研究对象,验证灰色预测模型的改进效果.研究结果表明,通过对累加生成序列进行函数求拟合,并求其定积分计算背景值的灰色预测模型具有更好的预测精度,相比于传统方法和指数函数积分法,改进方法得到背景值的平均相对预测误差减少0.097%、0.183%.
To enhance the accuracy of grey forecasting models in forecasting railway passenger volume,this study proposed fitting the accumulated generating sequence of sample data with a function,followed by determining its definite integral to improve the background value within the grey forecasting model.With Shanghai's railway passenger volume serving as the subject of investigation,the efficacy of the enhanced grey forecasting model was verified.The results indicate that a grey forecasting model incorporating functional fitting of the accumulated generating sequence and the calculation of background values through definite integration exhibits superior forecast precision.Compared to conventional methods and the exponential integral approach,the proposed improvement yields average relative forecasting errors for background values reduced by 0.097%and 0.183%respectively.

grey modelbackground value improvementfunction fittingrailway passenger volumeforecast

杨飞

展开 >

中铁工程设计咨询集团有限公司,北京 100055

灰色模型 背景值改进 函数拟合 铁路客运量 预测

2024

高速铁路技术
中国中铁二院工程集团有限责任公司

高速铁路技术

影响因子:0.398
ISSN:1674-8247
年,卷(期):2024.15(5)