首页|冶炼钒钛矿高炉操作炉型计算模拟研究

冶炼钒钛矿高炉操作炉型计算模拟研究

扫码查看
根据某钒钛磁铁矿冶炼高炉炉型设计参数和生产工况数据,通过MATLAB计算软件建立该高炉操作炉型计算模型,研究高炉运行中高温区域炉墙挂渣情况.计算结果表明:受高炉边缘气流控制较弱影响,高温区域炉墙的热负荷大多在12 kW/(m2·s)以下,冷却壁壁体温度接近炉壳温度,冷却壁热面的渣皮厚度普遍高于100 mm,且渣皮厚度分布不均匀,个别方向达到200 mm以上;对比普通高炉,冶炼钒钛磁铁矿高炉在同等热负荷下,高温区域挂渣能力更强,从安全性与渣皮稳定性考虑,高炉冷却壁热负荷应控制在10.50~34.50 kW/(m2·s).
Simulation of operation inner profile of blast furnace with smelting vanadium-titanium magnetite
Based on the design parameters and production conditions of a vanadium-titanium magnetite smelting blast furnace,a numerical model of the vanadium-titanium blast furnace operation inner model was established through a MATLAB calculation software in order to study the slag adhering situation of the furnace wall within high temperature zone of the blast furnace operation.The predicated results show that the heat load of the furnace wall within high temperature zone is mostly below than 12 kW/(m2 s)due to the weaker airflow control at the edge of the blast furnace.The temperature on cooling staves is close to that on shell.Besides,It is higher than 100 mm,and the slag skull thickness at the hot surface on staves is generally higher than 100 mm while unevenly distributed,even reaching up to more than 200 mm at specific directions.Compared with ordinary blast furnaces,vanadium-titanium magnetite smelting blast furnaces show stronger slag adhering capacity within high-temperature zones given the same thermal load.Considering safety and slag skull stability,the heat load of vanadium-ti-tanium blast furnace cooling staves should be controlled within 10.50~34.50 kW/(m2·s).

blast furnacevanadium-titanium magnetiteoperation inner profileMATLAB softwareslag skull

董晓森、饶家庭、郑魁

展开 >

钒钛资源综合利用国家重点实验室,攀钢集团研究院有限公司,四川攀枝花 617000

高炉 钒钛磁铁矿 操作炉型 MATLAB软件 渣皮

2024

钢铁钒钛
攀钢集团攀枝花钢铁研究院有限公司

钢铁钒钛

CSTPCD北大核心
影响因子:0.395
ISSN:1004-7638
年,卷(期):2024.45(3)
  • 6