首页|轴向拉伸载荷作用下缺口圆棒的应力三轴度

轴向拉伸载荷作用下缺口圆棒的应力三轴度

扫码查看
应力三轴度是表达应力状态的参量,可作为变量表征材料的塑性和断裂损伤模型,在结构强度和失效分析中发挥重要作用.具有缺口的圆棒拉伸试验可用于标定塑性和损伤模型中的参数.然而,文献中却存在两个不同的公式计算拉伸载荷作用时缺口圆棒最小截面轴心处的三轴度,二者分别由国际著名学者Bridgman和Wierzbicki先后提出,其不同性往往造成应用时的困惑.本文通过精细化的有限元计算分析,意在澄清两个公式的有效性和适用性.结果表明,Bridgman公式仅弹性阶段和特定a/R范围内较为准确,Bao-Wierzbicki公式与数值模拟结果及实验数据吻合较好,可用于计算整个拉伸过程中三轴度的算术平均值.基于进一步的分析,本文提出了理想弹塑性条件下塑性阶段的应力三轴度新的修正公式,还讨论了缺口几何和应变强化效应:指出不同的缺口比例会影响到颈部应力场,缺口比例越小,弹性阶段的应力三轴度越接近1/3;而应变强化则会导致拉伸过程中应力三轴度的降低.
Stress Triaxiality of a Notched Round Bar under Axial Loading
Stress triaxiality is a parameter that expresses the stress state and can be used as a variable to characterize the plasticity and fracture damage model of materials.It plays an important role in structur-al strength and failure analysis.The round bar tensile test with a notch can be used to calibrate the param-eters in the plastic and damage models.However,there are two different formulas in the literature to cal-culate the triaxiality of the minimum cross-sectional axis of a notched round bar under tensile loading,which were proposed by internationally renowned scholars Bridgman and Wierzbicki,respectively.Their differences often cause confusion in application.Through refined finite element numerical analysis,this ar-ticle attempts to clarify the validity and applicability of the two formulas.The results show that the Bridg-man formula is more accurate only in the elastic stage and in a specific a/R range.The Bao-Wierzbicki for-mula,on the other hand,is in good agreement with the experimental data and simulation results,which can be used to calculate the arithmetic mean value of triaxiality during the entire tensile process.Based on further analysis,a new revised stress triaxiality formula in the plastic stage under elastic-perfectly-plastic condition is proposed,and the notch geometry effect and strain-hardening effect are further discussed.It is pointed out that notch ratio can affect the neck stress field.The smaller is the notch ratio,the closer is the stress triaxiality value in the elastic stage to 1/3.When the notch ratio is too small,it can also affect the change of stress triaxiality throughout the entire tensile process.The strain-hardening effect can change the trend of stress triaxiality during the stretching process,and an increase in the strengthening modulus will lead to a decrease in the peak value of the plastic stage.The higher is the strengthening modulus,the faster is the decrease of stress triaxiality after entering the plastic stage.

stress triaxialitynotched round barnumerical simulationnotch geometry effectstrain-hardening effectnew revised formula

刘强生、席丰、朱哲民

展开 >

山东建筑大学土木工程学院,建筑结构加固改造与地下空间工程教育部重点实验室,济南,250101

应力三轴度 缺口圆棒 数值模拟 缺口几何效应 应变强化效应 新的修正公式

国家自然科学基金山东省研究生教育优质课程建设项目

12172198SDYKC20158

2024

固体力学学报
中国力学学会

固体力学学报

CSTPCD北大核心
影响因子:0.605
ISSN:0254-7805
年,卷(期):2024.45(2)
  • 16